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CHAPTER 1. INTRODUCTION

Diffusion is said to occur in a mixture when there is
a relative motion of its components. Such a motion is often
attributed solely to the diffusion force, the dominant factor
of which is a gradient in the chemical potential (modified,
of course, to remove that part of the chemical potential
gradient which produces macroscopic flow). Diffusibn arising
from these diffusion forces is commonly termed ordinary dif-
fusion. Diffusive flow may also arise from other inhomoge-
neities within the mixture. In the case of a nonuniformity
of the temperature this phenomenon is called thermal dif-
fusion.

Thermal diffusion is then the relative motion of the
components of a mixture due to temperature differences within
the mixture. When a temperature gradient is imposed upon a
mixture thermal diffusion will result in the creation of
concentration gradients which in turn cause ordinary diffu-
sion. The balancing of these two effects leads to a net
mass flux of zero.'

Thermal diffusion in mixtures of gases belongs to a
small class of physical phenomena which were predicted
theoretically before being observed experimentally. 1In
liquids the existence of thermal diffusion was first dis-
covered experimentallv bv Ludwia (1) in 1856 and investi-

gated more fully by Soret (2-5) in 1879-81. Thermal diffusion



in liquids is still commonly referred to as the Soret Ef-
fect. As early as 1873 Fedderson (6) suspected the existence
of thermal diffusion in gases and in fact, the effect was
observed in several phenomena without being recognized. The
most notable example in this latter category was the ob-
servation by Tyndall (7) in 1870 of the dust free region in
the gas space about a hot body, which shows the effect of a
temperature gradient on the motion of small particles sus-
pended in a gas. A common example of this effect is the
dust patterné which are often seen on walls near hot pipes
and radiators.

Despite such observations, thermal diffusion in gases
escaped identification until 1917 when the kinetic theory
of gases in nonequilibrium states was developed independ-
ently by Chapman (8-11) and Enskog (12-15). These theories
predict that diffusion due to a temperature gradient should
exist; the experimental verification by Chapman (16) soon
followed.

The phenomenological diffusion equations illustrate
the basic principles involved in diffusion. If for sim-
plicity we consider a binary mixture, the phenomenological

flux equation for component « can be written (17) as

a

Tu= 3 memy Bipdy - DL ¥onT (1.1)



where J« is the flux density, n is the total number density,
P is the mass density, m, and ms are the masses of components
« and B, respectively, B.(# is the ordinary diffusion coef-
ficient, and DY is the coefficient of thermal diffusion.

The diffusion force vector, 4’5 » includes the gradients 1n
concentration and pressure as well as the effects of the
external forces. A similar equation may be written for Js.
To study the counter balancing effects of thermal diffusion
and ordinary diffusion, it is convenient to use the thermal

diffusion ratio 4;, where

Both kinetic theory and experiment (18) show that 4, is ap-
proximately proportional to themole fraction product x,¥X,. Thus

it is convenient to define the thermal diffusion factor, a+, by

ar = b1/ X X (1.3)

It is this quantity which is usually chosen for study.
Clusius and Dickel (19) in 1938 showed how thermal dif-
fusion could be utilized to effect the nearly complete sep-
aration of the components of a gas mixture. This discovery
revived both a theoretical and experimental interest in
thermal diffusion. An excellent review of thermal diffusion

by Mason, Munn, and Smith (20) summarizes the resulting



developments in these areas.

Since the phenomenon itself depends strongly and sen-
sitively on the forces between the unlike molecules in a
mixture, we will utilize thermal diffusion as an experimental
tool to study intermolecular forces. This sensitivity on the
detailed manner in which molecules exchange linear and angular
momentum upon collision leads to severe difficulties when
attempting to give a simple physical description of thermal -
diffusion. This is in sharp contrast to other transport
properties such as thermal conductivity, viscosity, and
ordinary diffusion which are adequately described by simple
mean-free-path theories. These properties primarily depend
upon the probability of a molecular collision and only to a

very small extent upon the detailed nature of the collision.

The elementary theories which have been prbposed for
thermal diffusion in binary mixtures, such as those of
Furth (21), Frankel (22), or Furry (23), seem either to
be incorrect in basic essential points or else almost as
complicated as the rigorous Chapman-Enskog kinetic theory
itself. Recent work by Whalley and Winter (24) and
Laranjeira (25) has extended the elenentary theories to
include multicomponent mixtures.

The transport phenomena in a linear phenomenology are
characterized by the lraisport coefficisnts, which relate

the relevant fluxes to diffusion forces and the gradients



in the streaming velocity and temperature. Thus these
transport coefficients arise naturally in the computation
of the fluxes of the appropriate mechanical properties
(mass, momentum, or energy). The distortions from the
Maxwell-Boltzmann equilibrium distribution which give rise
to these fluxes are obtained by using the Chapman-Enskog
theory to solve the Boltzmann equation. The resulting set
of integral equations is commonly expressed in algebraic
form, utilizing a matrix representation of the collision
operator. The matrix elements of this representation are
sometimes called collision integrals since they involve
integration over the orientation and momentum variables of
a pair of interacting molecules. The evaluation of the
transport coefficients thus involves assuming a molecular
model for which the dynamics of a collision may be deter-
mined. This allows the calculation of the appropriate col-
lision integrals.

The transport coefficients were first calculated for
the rigid sphere model. These efforts were followed by
calculations for numerous spherical potential functions.
Hirschfelder et al. (17) shows the comparison between ex-
periment and theory for several of these models. In gen-
eral, the spherical collision models give good comparison
with experiment for those transport properties which depend

mainly on the probability of the occurrence of a collision,



such as thermal conductivity, viscosity and ordinary dif-
fusion. The spherical collision models give poorer results
for the thermal diffusion ratio for polyatomic gases, par-
ticularly in mixtures of isotopes. This indicates the need
for a molecular model with internal structure.

Thevtheory of transport phenomena in polyatomic gases
is greatly complicated by the existence of inelastic molecu-
lar collisions. Inelastic in this sense implies the pos-
sibility that the interacting molecules may exchange ro-
tational energy as well as translational energy. It is
assumed that collisions have little effect on the vibra-
;ional states of the interacting molecules, since the vi-
brational energy spacing is large compared to 4T. This
results in vibrational relaxation times which are of the
order of the time required for several ﬁolecular encounters.
Recently, classical dynamics has been applied to the treat-
ment of the internal degrees of freedom and the thermal
diffusion factor has been calculated for rough spheres by
Trubenbacher (26) and for loaded spheres by Sandler and
Dahler (27). Matzen et al. (28) have extended the calcu-
lations to ellipsoids of revolution. In the strictest sense
these internal degrees of freedom should, of course, be

treated quantally, but classical mechanics gives reliable

e maeB dem edlnmen hla wmadadld amaTl Amasvmame et s s T T e
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pared to £T. For CO and N, (molecules of interest in this



work), the average value of the rotational angular momentum
quantum number J is about 10 at room temperature. In com-
parison the average of J for H, is 1 and the rotational
collision dynamics for this molecule must be treated by
quantﬁm mechanics.

The purpose of the present work is to develop the.ex-
pressions for the transport properties of a multicomponent
mixture of polyatomic gases in both a field-free space and
in a constant, static magnetic or electric field. We also
wish to examine these expressions for physical insights into
the phenomena of thermal diffusion.

The following study of thermal diffusion begins with
a brief development of the Boltzmann equation for a poly-
atomic gas mixture; The method of solution of these equa-
tions is then presented in general and the kinetic equations
developed in detail for multicomponent gas mixtures. In
addition we develop the generalized Onsager force-flux re-
lationships in tensorial form. The perturbation theory for
matrices is given in a general form and applied specifically
to the kinetic equations of interest for both the field-free
and constant magnetic field cases to derive an analytic ex-
pression for the thermal diffusion coefficient. 1In order to

perform the matrix inversions required in the perturbation

- theory for the reduction of a general Cartesian tensor into



a linear combination of basis tensors of one dimensional
irreducible representations of the group of rotations
about the field direction. Finally, we use the ellipsoid
of revolution collision model to compare our theory with
experimental results for several isotopic binafy'mixtures.

Our major emphasis is on isotopic CO mixtures.



CHAPTER 2. DERIVATION OF THE BOLTZMANN EQUATION

A general classical mechanical treatment of the Boltz-
mann equation for polyatomic gases has recently been given
by Hoffman and Dahler (29). The development given here will
closely follow their outline.

The state of a single-component gas consisting of N
molecules is described by the distribution function
F‘”)(;:”xz) .-+, Ey,t) . where X; is a multidimensional
Cartesian vector whose components are the conjugate co-
ordinate (g;) and momenta (g;) variables of molecule i.
Both %: and p, have as many components as the molecule has
degrees of freedom. This distribution function is defined
such that F¥JI 4%, ...dT, is the number of N-molecule sys-
tems which have one molecule in the range dX, about X,, one
molecule in the range dX, about X,, and so on for all X;
and dX;. Here dX; implies the Cartesian volume element
‘g’dﬁpJ Pupt where ¢, . and p;, are the conjugate coordinate
and momentum associated with the g degree of freedom of
molecule {. The function F‘¥ is normalized to N!. The
lower order distribution function F' for an N-molecule
system (isn<N) is defined to be the probability of finding
n molecules in respective ranges dI,, JX,,':,d%, about
x,X,--,X, without regard to the positions and momenta of
the remaining (¥-») molecules. To obtafn F (" we can inte-

grate the N-molecule distribution function over all the
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coordinates and momenta of the (N-n) molecules, that is,
P =[(N'-n)].] /J;nﬂ [‘Ixm-a"' [‘I_xw F‘N)' (2.1)

The equation of motion for the N -molecule system is

the Liouville equation

N £ 4 ) uv) w) )
{..LL‘- - 4F 7 iﬁ_}.-: 0, (2.2)

£=l ﬂ—l JZsp ‘lf‘ J'Pbﬁ J-inp

where W™ is the Hamiltonian for the system. If we assume

that #* can be written in the form

uv) ZHU) ¢ 2= Vii (2.3)

F 245

where Hi“) is the single-particle Hamiltonian for molecule
i and V;; is the pair interaction potential for the inter-
action between molecules ¢ and 4, and if we integrate Equa-

tion 2.2 over dX X N’ then we obtain the BBGKY

e Jxmz) Tt

hierarchy of coupled equations

a w (..) (n) .
: 4 F
J.t b% #Z {J.g" l"»‘) + Y ( f‘-ﬁ)

(2.4)
df.. F(RH)JV n s (F('Hl) v, nol)}
L_' e } Lnel {‘f"— ( Th ) J;L’ I P.a
which aovern the lower order dlstributlon functions F‘") -

For systems to which the Hamiltonian in Equation 2.3 is



11

applicable, the macroscopic properties may be calculated
from a knowledge of F') and F‘?, the singlet and pair
distribution functions. These functions are needed to com-
pute the kinetic and potential contributions, respectively,
to the macrbscopic properties. The distribution functions
F*Y and F'* are proportional, respectively, to the density
and the square of the density. Thus for low densities the
kinetic éffect will be the dominant contribution and F¢"
will.be sufficient to describe the macroscopic properties
of interest. Hence the remainder of this chapter will be
concentrated on the singlet distribution function.

We wish now to define a distribution function, £,

for molecules which are not in the midst of collisional

encounters as
Em’N[dzl'“[un(ﬁ-zf;,l) F-uv)’ (2.5)

where the subscript indicates that F® is a function of the
position and momentum variables of molecule 1. Let us define
0; to be a body fixed, convex region enveloping molecule :.
The dimensions of ¢; are arbitrarily chosen but in practice
the shape is dictated by the molecular geometry. A convex

region ¢3,; , which is a function of the orientation of bodies

i and i, ia defined to be the volume enclosed by the center

- me——— —— ——— —_—e | e —

of mass of 4 as it is moved about molecule L in such a way
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that the orientations of both bodies is held fixed and the
regions ¢; and ¢f are just in contact. The function §, ,
of Equation 2.5 is then defined to be zero whenever regions
¢; and ¢; are in contact (or equivalently, when the center
of mass of molecule ; is inside o7 ;), and is equal to ome
otherwise. Thus ?‘2“’ is the distribution of molecules
which are "isolated" in the sense thét no other molecule

} is in the ¢ ; region around molecule (. If we write
f,’.‘= 1-44,, . where &,, is defined to be zero when

f3,) 1is one and one when §,, is zero, then the product

N

I, ¥j,) can be written as the expansion

Ts =1-3s5,+ % (2.6)
3=2 4! g23 4! * 472 Iy Sin iy T . y
Putting Equation 2.6 into Equation 2.5 and int.egrating we

obtain this new distribution function in terms of the usual

distribution functions F’ as

F%= £9- [ax, 6 v 4 fax, [d3, FE) - (2.7
' Hr e %3 ;
or,
~u) " n
R = 5 Leavmd [dx, - fdx,,, F O, (2.8)
nze % Tnt

The first term on the right hand side just represents the
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molecule density, the second term subtracts from this the.
number of paired molecules (paired in the sense that molecule
2 is in the ¢,,, region about molecule 1), the third corrects
for the counting of pairs which are embedded within molecular
trios, and so on.

For any realistic choice of an intermolecular potential,
only a finite number of molecules can be confined to a small
region about molecule 1. This causes the truncation of the
above series after a finite number of terms. 1In fact, for
the rigid collision models which will be of concern in this
work, @;;; can always be chosen so that A = F*) by

letting o ;

,,j be only infinitesimally larger than the volume

excluded to molecule j by the presence of molecule 1.
To obtain the equation of change for F “ | we multiply
the N-particle Liouville equation by NZ,, where

==m 1

. 7,1 . and integrate, to obtain

~w NN
ji’ +NIJ!3"'I‘1¥~E. [F(N)) gl ":)J

-

) (2.9)

=-NfdE, - JIZLE [FY, 2 3V, ]

3>i

where the brackets represent Poisson brackets for the N-

molecule system and are of fhe form

iy N & _ Fid .
re, -2 2183 -3k 4, ). (2.10)
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This in turn reduces to

JF(‘)

- ) b
J.* * [FI“)J Hltl)J = IJ;Y:. Fazu) E rﬂ.:l 2 H:“, + Hau)] )

.11
2 -N(dL, e fITa E LE, )Y (210
with v=2 3 Vi and vwhere
13 ’,7&
-~ z)
o = L 1/en-n)t] (41, [dX, (’T_'f‘!,,,) F (2.12)

is the distribution function for isolated molecule pairs.
If we assume that the linéar dimensions of the region
7, exceed the range of the intermolecule forces, or
‘equivalently, that the intermolecular potential V,; is zero
for all states of the two molecules 1 and 3 when the center
of mass of 4 is outside Typ then the right hand side of

Equation 2.]11 vanishes and we have

~ ) -~ 0
sh v [E, W] =) FY (2.13)

with

—~ ) ~r ’ ) '
JF = fAdT, FP 8, , 0+ 0] (2.14)
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The space of the center of mass variable of one molecule
can be spanned by a sequence of surfaces which are similar
in a geometric sense to the surface of the convex region
and scaled by a parameter P. Thus, the location of the center
of mass of molecule 2 can be given in terms of £, which
specifies the convex surface on which the mass center lies,
and 2, which is the surface normal at the position of the
mass center. When /=1, the center of mass of 2 lies on o}
and therefore §,, =7 (f-1) , where 7 is the unit step func-
tion. We can then replace the Poisson bracket in Equation

2.14 by

S(P-0F = £er-1) P, b+ u® 1 (2.15)

where s(P-1) is a delta function and F = [P, #% + w"] S
The. Poisson bracket of a function withthe Hamiltonianis the
implicit time derivative of the function through the posi-
tion and momenta coordinates.

The variables of molecule 2 may be written in the
separated form JZ,= dx, dg, d 2, where 2 is the collection of
all linear and angular momentum variables, g, is the set of
molecular orientation variables, and x, is the position

vector of the center of mass. It is convenient to use the

Elaman Tl awmd an nnnles arnA -i—'b:e anmilar mcment’llm. . for the

LA NP A Bt Ve dn e - —a -y e — i =i == o

molecular rotation variables even though they do not form a
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conjugate set of coordinate and momentum variables. If we
let dB, = acnododg i¥ , where o and ¢ are the polar angles
describing the orientation of an arbitrary body fixed vector
and ¥ gives the orientation of a second body fixed vector
which is perpendicular to the first, then it is easy to show
that the Jacobian of the transformation from a conjugate set
of rotation variables to these variables is unity (29). The
differential position vector dx, may be written as

dx, = P2hdPd®S where d2s is the differential surface element
of 0. and h=(§,-8,)-4 is the supporting function for
the convex region, ¢;,2 . Here the symbol §; (i =1o0r 2)
represents a vector extending from the center of mass of
molecule ¢ to the point of contact of ¢; and ¢; when f=1.
It can be shown (29) that fh at f=1 is the relative vel-
ocity of the points of contact of ¢; and ¢; projected onto
A, the surface normal at the point of contact on ¢; (which,
as previously defined, is also the surface normal to o7,.

at the positioh of the center of mass of 2). Therefore we
can write fh=g.4, where 3 is the relative velocity of the

points of contact and is given by

g =eq + (27 La)xs, ~(I]'-L)xS,. (2.16)

Here I, =I(g:;) is the inertial tensor (where g; indicates

that the inertial tensors must be referenced to the space
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frame), L; the angular momentum of molecule {, and ¢,, is
the relative velocity of the centers of mass of molecules 2
and 1. The quantity (5;59,) is the angular velocity of
molecule 1.

We can now write Equation 2.14 as
de " = fdafdg,[d*s (R-g3) ELY. | (2.17)

Since the quantity ﬁt; is the normal component of the rela-
tive velocity of the points of contact of ¢; and ¢;, the
quantity d2dg.ds (£-3)F,;” represents the differential
rate at which molecules become paired (ﬁn4<0) or unpaired
(i-3>0). The entire integral is called the collision
operator, since in a ph’'sical sense it is the net rate of
encounters of molecule 1 with a11>other molecules ;.

In this work we will evaluate the collision operator
by assuming that the colliding molecules are rigid, non-
deformable convex bodies. This model allows us to consider
the entire collision event as a single impulsive encounter
(if we ignore the possibility of chattering, that is, a two
body collision which consists of a sequence of correlated
impulses resulting from the nonspherical nature of the
bodies). These rigid collision models are certainly not
entirely realistic gpproximations of the interaction po-

tential. However, they should be reasonably accurate for
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fluids composed of relatively small, weakly polar molecules,
particularly when the thermal energy is large compared to
the van der Waals attractions between the molecules. As
mentioned earlier, for rigid collision models we can make
F¢» = F~ by taking ¢;,; to be differentially larger than
the excluded volume. At the point of contact,
F e Py g tix+8,- 52, Bar2s t) o

The collisional impulses of rigid bodies are of in-
finitesimal duration and thus the possibility of a third
body affecting the position and momentum states of the two
interacting bodies is negligible. Therefore each precol-
lision state of the two colliding molecules which have
positions and momenta such that a collision is about to
occur can be uniquely connected through the two particle
dynamics to a postcollisional state. The probability of
observing a pair of molecules in this precollisional state
at a given time is exactly equal to the probability of ob-
serving the molecules in the associated postcollisional
state a short time later. That is, F;::)(t-tc) =R (g)
where t. is the duration of the collision (which is in-
finitesimal for rigid bodies). If the surfaces are smooth

it can be shown from conservation of energy and linear and

angular momentum that the collision reverses the algebraic

A
I Sy e ¥ . la} & - ok
sign of L.3. On the preccllisional surface, L.;-2, whereas

L.3>0 for the postcollisional surface. We can now write
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Equation 2.17 in the form

s R ={.‘;‘:§fg£z [PsLog PO g% 5 X + 8,75, ,82 ;2% 5 5 -04)

(2.18)

+{-J:£J°£z fJaS 1'} F‘a)(!)fu'j!“’st =2$3,82 t).

The asterisks denote the state on the precollisional surface
which is uniquely connected to a state on the postcollisional
surface by the collision dynamics.

The next approximation we make is that of molecular
chaos, which is to say that in precollision regions there
is no statistical correlation between the probable distri-
butions of molecule | and molecule 2. Under this assumption
the pair distribution function for a precollisional state
factors into a product of the singlet distribution functions
as Fx,g,,050+8,-5,,£2,2)=Fx,8,0 Fxs5-2,8,,2) -
The difference in position of the centers of mass of molecules
J and 2 in the singlet distribution functions is negligible
to lowest order in the density. Thus we assume the position
variables of the two molecules to be identical and will
hereafter indicate only the momentum and orientation vari-
ables explicitly. Equation 2.18 now becomes |

L POl s Tg) £ tst) F st

- (X-3)F 01,8, F® (2, 8.)
# )22 (2.19)

!
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=[f[d1"da'da Cwaup apal s '8 ) FOuR) FPalpl)

—wli's/ 2l 11p,24) F0,) F 1, 8,),

where w(ip, 28.11'8,'28!) is the transition rate of the momentum

variables from the 1‘2' to the /2 states and is seen to be

| weig, 28,11, 28) =f d%s 2-4 S(1'-17) §La'-a2%), (2.20)

hog>o _
The asterisks again refer to precollisional states which
are correlated to the /2 states through the binary col-
lision dynamics. 1In reference (29), the property of

bilateral normalization,

Jrdirda weig,zp, b1'pta's)) = [fdi'da'wii'al2's) |18, 24,) (2.21)

is established. This is sufficient to reduce Equation 2.19

to the usual form of the collision operator

Jc F;(') '!Ird’ldl'dz w(‘p‘zpa,llp'lzlﬁ;)x

2.22
LR ) Fa gl) - Fp) F02, )], ( ’

The derivation presented for Equation 2.22 is specific

to the rigid convex body model. However the same form is
Shtained for a gencral mcdel if we untilize =lightly more

-_— PP

general assumptions. First we consider systems of low
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density, so that F” = F!? ., Next we assume that the
collisional interactions are isolated binary events, which
allows us to replace F,2) (1,8,2,4,t) With £:2( %% 2% 8% +-2.)
where t. is the duration of the interaction and where again
the asterisks denote a state on the precollision surface.

ﬁe then assume molecular chaos and factor the pair dis-
tribution function in precollision regions into a product

of the corresponding singlet distribution functions,
FU,8,2,8,) = F%1,8,) F'2(2,p). We assume in these expres-

-sions for .F® that variationsin F® are negligible over time
intervals, t, , of the order of the duration and distances

of the order of the spatial extension, ~¢,,t,, of a col-
lision event. Taking into account these small variations

in the position and time dependence of the singlet dis-
tribution functions leads to density corrections in the
theory.

We are now in position to reduce Equation 2.13 to the
usual form of the Boltzmann equation. 'Since the orienta-
tions of the.molecﬁles vary on a time scale which is very
_short compared to the collision frequency, the distribution
function must be nearly independent of those orientation
variables which are rapidly changing. The Boltzmann dis-
tribution function, f(1) , is then conveniently defined as
an average over an interval of time which is long compared

to the duration of a collision but less than the interval
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between successive collisions. Thus the distribution
function f(i) is a function only of the linear and angular
momentum variables and the orientation variables which are
free flight invariants. 1In practice we ignore all the

orientation variables and hence define f«) by

fa) = [dg, Fa,g). : (2.23)

The case of the rigid rotor modzl (used to represent
linear molecules) deserves special attention since this
model has only two active rotational degrees of freedom.
Since such molecules are cylindrically symmetric. about the
internuclear axis the distribution function is independent
of the angle specifying the orientation about this axis and
at the same time the component of angular momentum along
this axis is collisionally conserved. For molecules in a
I state (which represents most of the cases of interest)
this component of angular momentum is zero whereas for
molecules such as N0 there is a nonzero component of angu-
lar momentum due to the electrons. The distribution func-
tion in the full phase space (that is, with three Eulerian
angles and'three components of angular momentum), which for
present purposes we denote by ., , can be written

Voo (2.24)
ey 0
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where h(L,) is the normalized distribution of L,, the com-
ponent of angular momentum along the molecular axis, the
factor I/2r is a normalization constant arising from the
trivial Eulerian angle, and f,,, is the distribution func-
tion which includes the two active rotational degrees of
freedom. The rotational variables in this case can be taken
to be either the vector &, along the internuclear axis
'(which is aescribed by 2 angles) and the two components of
angular momentum L, and L; in the plane perpendicular to
¢,, or can be described by L in a space fixed frame (3 com-
ponents) and the phase angle, ¢, of the internuclear axis
in the plane perpendicular to the angular momentum. The

relationship between these variables is such that
+—dLdg =de, du,du,. (2.25)

The choice of independent variables will be dictated by
convenience.

Under these considerations, we can substitute Equation
2.22 into Equation 2.13 and perform the integrations as in-

dicated in Equation 2.23 to obtain

4+ ¢ 0 +£@.

wh-

N E]F)= J FO), (2.26)

which is the standard ferm of Boltzmann's egquation for a

single species system. Here 9= %z , and N=2xx7 is the
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torque and F 19 the external body forces which act on the
particles during their free-flight motion. The quantity

4 is the dipole moment (electric or magnetic) and § is the
external field (electric or magnetic). I"or diamagnetic
molecules in the magnetic field case (which is the case of
interest in the present work), x is proportional to gL,
where § is the gyromagnetic ratio. Collisional forces are
assumed to be much larger than external forces and hence N
and F'® do not affect the transition rates.

The generalization to multicomponent mixtures is
straightforward. The rate of change in the distribution
function of any one species due to collisions is just the
sum of contributions from collisions of that species with

itself and with all other species. That is,

Cfe +e1-7 +£2- S ]8R0 = -5 £ £0)

(2.27)
+ ;.' fIfdi'd2'da W Gan'2’) L u) f(at) - f.0 -F,Lz)]

where the subscripts « and g represent species and § is

a summation over all species in the mixture.
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CHAPTER 3. LINEAR TRANSPORT THEORY FOR A

DILUTE POLYATOMIC GAS MIXTURE

Our objective is to obtain numerical estimates of the
linear transport coefficients, particularly.ﬁhose associated
with concentration and thermal diffusion. This information
can be extracted from the "normal" solutions of the Boltzmann
equation which are generated by the method of Chapman
and Enskog. Since the status and interpretation of
these solutions have been considered thoroughly elsewhere
(30), the only concern here is with the mechanics 6f the
solution procedure. We assume the external forces,f*d, to
be so weak that they do not significantly alter the states
of the molecules during the brief intervals between their
successive collisions. Also, if we adopt as our unit in-
terval the free-path transit time, the three terms on the
left hand side of Equation 2.27 all are of the same order
of magnitude and each is smaller by a factor of approxi-
mately As;p/¢ than the right hand side (29). Here A;p is
the free-path length and R>>A;,, the scale of the spatial-
inhomogeneities of temperature, velocity and concentration.

To construct the normal solution of Equation 2.27 we
multiply its entire left hand side by a dimensionless marker
€ (= 1\"/1) and assume that there is a solution of this mod-

ified equation of the form ZG"-P.?O -« Furthermore, we assume
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(see reference (30) for a *thorough discussion of the in-
ternal consistency of these various assumptions) that the
time and position dependence of each function 4'-"‘ k) is im-
plicit and governed by the variations with t and x of the
macroscopic variables P (= n,(tx), T(tx), and 4 (zx)).

Finally, we expand the time derivatives of these macroscopic
variables in series §f =Ze*(£),f . After these expansions
are substituted into the modified Boltzmann equation of
Equation 2.27, we assume that the resulting expressions are
satisfied order-by-order in the perturbation parameter €.
The first of the equations obtained by this procedure are

satisfied by the Maxwell-Boltzmann distributions

o) _
ﬂ( = Ny (my /2 AT 2"cxp{-i?(im..cf +£.)3 (3.1)

where C=c-u, £, is the rotational energy of an «-species
molecule and 2, is the rotational partition function de-
termined by classical mechanics. Finally, nyg, u, and T,
respectively, are chosen equal to the local, instantaneous
values of the number density of species «, the mass average
velocity, and temperature. Because of this the higher order

terms -F,fk) , k>0 , must conform to the subsidiary conditions

fé")(_n.u = Z%lemf_ Q;fi")u) = .)‘IIJI{é myCl 4 £ };__f“)(,‘) =0. (3.2)
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We also reqtiire the internal angular momentum density of

each species to be zero so that fdI L -I-'_fk)(l) =0 r k>0 .
The linear phenomenological description of the fluid

. . . ) (o)

is completely determined by the functions f, = -f,‘k $u

which satisfy the linear, inhomogeneous integrodifferential

equations

b0 = - ﬁ,\:{”* éaca,u) (¢P) + Nang f;u,p) (4, )} (3.3)

with

2.0)=E) + ¢, -v + EO- I';') -F,(:)ll)

o ‘cz
= £ (B se,one +TT (T - & (3.4)

£atn- £

@ e )T+ F2{(B), +erm)u-F93.¢, ],

A (D)
nd e“"/‘) (6) = édﬂ 'F.{ (l) é_f(,‘(l)xg' ﬁ; ¢“(l) )

and _ (3.5)
n f:' - G_(?-) ; Z G-(‘)
gl ya, g P ERCTIR ST
where
¢+

we 0" fffdi*da'da W i2lt'a") é?c)-ff)(a) L4z - ¢’{;’)j (3.6)



28

with 4=/ or 2. If we define £, and 4, to be the «th
components of the "composition vectors" # and §, respec-
tively, and interpret n, 8u,s) and ngngf . to be the
#f-elements of the operators n® and n*l ‘in composition
space, then Equation 3.3 can be written in the compact form
5=-nb8) -n*F@ =-A(F) .

For these equations to be soluble it is both necessary
and sufficient that £ be orthogonal to all solutions X of
the homogeneous adjoint equations _’/\T{x) =0 . These solu-
tions consist of the composition vectors with components

X.‘,{’=$‘, (for all species g), xﬁf’: m,¢ , and

A =4me*+ £, and correspond, respectively, to the sum-

mational invariants, namely, the mass for each species,
momentum, and energy. The resulting orthogonality con-
ditions,

Jdrd . u) = g[‘u m, e,8,0) =§f¢ll{~§m‘cf"+ £.()3 8,0 =0, (3.7)

can be rewritten in the forms,

(3.8)

by
12}
p g
o
7S
1]
]
=
Q
3
]
S
]
Q
)
-,-
M
-~
X
N
g
-
(o)
[

B
-‘
"

-4:9T -(p/e,)Q-u
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withp=45 + fi=mune s, P=Zf.., p=nAT, and
¢,=3nk/2+5n.t, , where &, is the contribution of in-
ternal degrees of freedom to the heat capacity (per molecule)
of the species «.

Therefore, we must choose for (%), n. , (&), u , and
(#:),T the functions defined by Equation 3.8 in order that
the integrodifferential equations in Equation 3.3 be

soluble. When this is done we find that

o, =‘F-‘¢°)[%;£'é-t+(wz+£:— 5 -?}g.%t

o X
+H{aww - V[ (wirel- 3 -EL)#]} 1 T4] (3.9)

where £’ istherank 2unit tensor in 3-dimensional space (see
Chapter 6), w=(m./2aT% ¢ , €% = s./aT, E} = E /AT,

and where the generalized diffusion forces
de = Z(na/n)+ (nasn - £usp) T - Lo (P EY -5 E) (3.10)

satisfy the condition Xd, =0 of linear dependence.
Since the operatoi:'_/'i is linear and since & depends
linearly upon the variables d,, ¥T, S and 7-u, the distor-

tion ;5‘ must be of the form,

’ PN — -~ -~ - = ’ ~
Pu= (AT Ay VinT - Buif - Y w+ nZ 3, (dp /s
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where $ is the traceless and symmetric portion of the second
rank tensor yu. The most general solution of Equation 3.3
would also include a linear combination, b, m« + % mg ¢
*h(dm.t*+ €,) , of solutions of the corresponding homogeneous
equation (where b., $. and h are arbitrary constants). How-
ever, the subsidiary conditions of Equation 3.2 which arise
from our choice of the arbitrary constants in f.°) require
that b, = g =h- 0 . It is for this reason and the fact
that O is independent of curl u that we omit from $, a term
proportional to curlu. The linear dependence (Zd, =0) of
vectors d_, causes an arbitrariness of definition of the co-
eificients éff) which we resolve by requiring that

§ff)= 0 for all species «.

The functions A., Bu, Ox, and § ff) (which are the ath
components, respectively, of the composition vectors #, B,
D, andNS“) ) are independent of the generalized forces and,
in addition, the second rank tensors B8, are both symmetric
and traceless. The diffusion forces (ds/f - d,/f) for all
p #4 form a linearly independent set of N-I vectors where
N is the number of components. (Here # is arbitrarily
chosen.) We conclude from Equations 3.3, 3.9, and 3.11,
the identify d./A=35(S,s-la/P)(dplly - dy/ fy) . and the
independence of the generalized forces, that the unknown

tensor functions satisiy Lhe seéparate ilinear &Juacions



(Y)) (3.12)

with
(A _y, L0) -
b= m‘y"\c.‘ [wiw2+e¥-£-E21)]
8
5.2 = 240 L w)®

©®_ ) _ (3.13)
b, =4 LG~ erre,Ywi- g €l v i (34 88)-1]]

(5(7)) o
By =8 m oL T-Suy + 2, /7],

The symbol [;_(](") denotes the highest weight irreducible
part of the polyad formed from n X’s, that is,XXx:'- X
(see Chapter 6).

The subsidiary conditions in Equation 3.2 impose the

restrictions

(0)

Jd1£.7Q. ?Li') =0

and (3.14)
(o) ‘ .
2 fdl £, Q‘X‘(‘)=DJL=2N'3

upon the tensor-valued functions @, (= A., B, ,D«,S")

To the linear approximation (f, = &+ £8'= 2 (1+¢.)
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with @, given by Equation 3.11) the fluxes of mass, momentum

and energy are
(o)
fu 4“ My Q ]

J. = fdi £, ma €, = [di

T = S1d 60 mLe]" = 5 S280m g maL 2]
(3.15)
=% ; fdi F,,_Au)m.‘t,l = % i:fdlﬁ@fl) G My c?
Q=S fdIf0) e, [dme + EWI =T T 0, +@°,
where the pressure tensor P is given by
P=pgW+ T +mg® (3.16)
and where
He=m (AT + E.)
and
Q= ZSdIf g e [amal? s Ea) - SAT - £.],

By means of Equations 3.12, 3.13, and the orthogonality

conditions in Equation3.7, it is readily established that

- {{.¢) 5(.‘)}}

(s)
-2 fdig, 8y

Ju =
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~AT Z/dI Jze,f”¢d =T {{¢,B}}

Yo

(3.17)
T = ATZJdI g, 87 = AT {14, 03]

Q' = AT (21 Z (414, oM - pTaan {{4,n1},

where we have introduced the (double) bracket integral

f{a,plf=la,AkN=2fd1a, m zLn é.w TREIN F,,,, ¢,)]

of two tensors & and k. From Equation 3.1l we establish

the general force-flux relationships

To=(@)%er 102,590 + s:18,5°%
2w {10, 5V n 3 Uy sp) 159, 5913

ﬁ— —AT[@{‘})& gT- {14,833 + 5: {18, 813

+2-u {{0,83} - n 3ldu/p)- 115, BIY]
(3.13)
e -aT[(ER) yT- 504,030 + 5 i1, O}

+v-u {0, 0}} - nZ(d, /f) 189, p31]

Ql=_‘_7(2&7)yz[(%)&gr-{{ﬂ AR+ 2:{{8, R}

-) - >



34

+u§10,03 -n 5 (4,/5)- {15, aR].

The fluxes are all polar quantities from which it
follows that they are eigenfunctions of the parity operator

P with the properties
(3.19)

A
P—\Td-_!‘- 3

']
Q=-gq ;
In reference (29) it was shown that "l"f' =f‘”f' , Where

)

T is the total time-reversal operator and the symbol + in-
It is

dicates the transpose conjugate of the operator.
readily verified that &:=-8"7 is antisymmetric, where & is
If we

a function of the magnetic or the electric field.

consider the total time-reversal operator, T, to be the
A A A
7 Ty . where T, and T. operate only on the

product 3‘,, ’?’q =T

momentum and external field variables, respectively, then

=6 An and T 6 =3 & A; (upper sign for magnetic field,
Thus T6 = 6’7 and hence

T, 6
lower sign for electric field).

‘_R =_;‘\1’-?- .
At this point we diverge a moment to prove a useful
For simplicity, consider a general

operator property.
function of two variables, F(x,y) , and an operator 6.

If O operates on the integral of Fl(x, y) over the entire

space spanned by x, we can write



S/dx Flay) T fdx 0, Fuxy) (3.20)

where 5), indicates that 0 operates only on the variabley.
Since the integral is over the entire space spanned by X,

we can replace x with 4 'x to obtain

Ofdx Fix,y) = fd (8 x) 8, Flx,y), (3.21)

when we have assumed that the Jacobian of the variable
change is unity. Now, changing 0;'x to «x changes X

to B, X, so

0Jdx Flx,y)=Jdx B, F(8,x,y)= [dx Be,y F x,v), (3.22)

where now 3,}, operates on both x and y. Thus operating on
the integral which is a function only of y is equivalent to
operating on all the variables in the integrand.

Since T is its own inverse, we can write the bracket

integrals in the form

${a, ¥ =(a, Aw))=(a,¥5FA ). (3.23)

If A¢e) and A(p) are assumed to be eigenfunctions of T
with eigenvalues 7, and 7, respectively, and if we write

A

T in its component product form, then

{a, 0 =7 (2, T T, AR, (3.24)
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Using the operator property of Equation 3.22, we can write
Equation 3.24 as

N ~
e, e B =7 T (T_qa, T, Al

11 ad
Ll
~
.

(3.25)

The operator 7':,,, is a function only of the variables of in-
tegration, and so by integrating by parts and using the

fact that TA =A'T we have

A L)

e, b =TT (A7 )Tg2,b) =T, Te (TR, b ). (3.26)

we

Performing the T operation and transposing the indices, we

finally obtain the result
fle,bit="" '?.;. (g, A2} = 1.7, "r‘,; f{b,all’ (3.27)

Here a. and b are tensors which may contain a field de-
pendence and the superscript T indicates bulk transposition
of the two sets of indices associated with g4 and b.

The expressions for the fluxes as given in Equation
3.18 together with the parity relations (Equation 3.19)
and the integral theorem (Equation 3.27) lead immediately
to the Onsager-Casimir relationships which may be summarized
as follows:

(i) Each of {4,831} = {{¢", a3} I,
£1¢“, 831 = 1{¢®, s} , and {4,211}
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can be expressed in the form

£,

112

MR+ L, AR -2, Axg?

where Z,. is an odd function of ¥ for %= %
and is identically zero for ¥- £ . Here £
is a unit vector in the direction of the field
and ém is the rank 2 unit tensor in 3-
dimensional space.
(ii) The integrals {4,031 =-{{0,43} and

118 03} =- ({0, £  are zero for F=¥
and proportional to 1 for T=£.

(iii) In the case of 7 =% the integrals {ie,g_}} ={{§,g}§"
and {f ¢, 8} ‘.{{5,5""}}1- are zero. How-
ever, with F-£ , {{4,81% ={{8, lj?}T and

(15,88 = 118, $°"3}7  are of the form

where F' and F” are the two third rank tensors
which are odd in the field and traceless and
symmetric on their last pair of indices.
(iv) {{0,83}={{B,p}} is proportional to il-4 _§“).
(v) {18,811} can be expressed as a combination of
the five linearly independent fourth rank

tensors which are traceless and symmetric in

their first and last pair of indices. In the
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case that ¥=¢ , the coefficients of two of
these tensors (those odd in the field) vanish.
The independent tensors for each of the above cases are
determined by methods described in Chapter 6. As a further
consequence of the integral theorem (Equation 3.27) we note
that the rate of entropy production, which is g, = &{{ 4, $33
(k is the Boltzmann constant) in the linear approximation,

satisfies the relationship g, = T 9s -

The flux vectors of Equation 3.18 can now be written

as
To= ot ) - 2 32l (4p/10)
-]
F=-270"s
(3.28)
MT=-7, ¥%°u
! ! p
8'= 0., ¥(F)- F52op (d/8).

The -Q‘;'-‘ used in Equation 3.28 can be defined either in

terms of the form of Equation 3.15 or Equation 3.17 as

! '

xo Ly, F -T‘(?,%)"{{a, [y ¥

¥p

= 2AT? m;yz IJI-F,?) A, w
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ER YRR EAT T il

r Ve o) 8)
= - 2 tam a4 £ g8 (3.29)

N
]

M5
A
M
Ho

[} )
[N

! 5 =m,= ATI{D, P}}

“Q‘éa = 24°77 {.&)52}

]
™M

BT U £ wiwtr £X - % - £2 1

. ‘ = A
ST, = ILUp I B <O

In the field-free case all of the force-flux coupling

coefficients must be isotropic tensors and thus we find

that

19
1 3
'

s, 2l3) - £ 3l (4, 00)

1= T
L]
)
S
112}

(3.30)

:‘
[}

Ny Yo u

&'= 04 plF) = £ X os (ds/f)

where now
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“4 (3.31)

In the standard treatment of £he kinetic theory of
mixtures (17) the final term in Equation 3.11 is written
as n ; S:’)- ds with the conditions _C_:‘) =0 (to account
for the linear dependence of the forces dz). The coef-
ficients of d g in this convention are related to our pre-

vious choice of coefficients by the expressions

) ) (=)
e =5, - 5 /0

(3.32)

1)) ) t {
S =p el ";ggfr‘—:&-

Using this form of ¢¢ leads to the following expressions

for J, and Q' in the field free case:

2

n
‘L&sz %MFQ.‘FQA—(DI/T)_V_T
(3.33)

!

24

P Z(D{/f)da -A'TT

where

Dig = (1/2nm,) (aaT/m ) [d1£3%0) W, !:'.fs)(u

o = (akT/3) m™ (41 £ w, 4.0 (3.34)
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AN = (2427/3) z mI 41 £80 Lwre 20 - - E2] w,- A, ).

From Equations 3.11, 3.15, 3.32, and 3.34 w= then have
- —.——-?f ——--—l ( -n" - -n'-:-t ) (3 35)
ﬁ-(p - on?T M‘Mﬂ 7# f.g / "

or conversely,

’

and (3.36)

= 4 T . ' 24!
a4, =0, =T 3 @/, =T*A

which establishes the relationships between the transport

coefficients in the two treatments.
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CHAPTER 4. SOLUTION OF THE KINETIC EQUATIONS

Since our ultimate concern is with a comparison of
theory and experimental thermal diffusion, thermal con-
ductivity, and diffusion data, we need only determine the
coefficients A, and § _(f) . To this end we follow the usual
procedure of converting the appropriate integral equations
into matrix forms by expanding the unknown functions in a
complete set of functions which are dependent upon the
momentum variables of single molecules. We take these
variables to be the reduced linear momentum w =(m/24T)¥ ¢
and the reduced angular momentum.a. The :th component of
the reduced angular momentum in the principal axis frame is
—fl,',-—('/ﬁkf)y‘ha/I,- , where L; and I; are the {th component of
rotational angular momentum and the ith principal moment of
inertia, respectively.

The functions A, and 5‘“’) can be expressed in terms of

a complete set of expansion functions as

) +
4. = %, Spay 9 S s, s (23 01”121V Y AL )

and : (4.1)

) _ ( i a )] ) AP+g o (8)
S, -P’Zu rra )S‘H.QL)LWJ (Aot

P T T U I S 'I b I "D Lo TPamormm =iad WMatsmSeamer (2T)
WIilli Ll wad Vidiygaun .Lx P&.UFUDCU. MY DAY QUL QM SIS e Y Ve

Here S:") denotes a Sonine polynomial (17), L 1]") denotes
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the highest weight irreducible part of the polyad formed

from y X’s (these are discussed in detail in Chapter 6),

)

<cpgst) L€ tensors of

and the coefficients A y and §

a(pgst
rank p+g+1. The symbol ®©”'t indicates a (p+¢)-fold scalar
product of the two tensors between which it is placed and
r indicates the number of rotational degrees of freedom of
the molecules. The functions A_ and $® are themselves
the «th components of the "composition" vectors 4 and ¢,
We can thus write Equation 4.1 in the more general form

A=Z Z PUerorts g
pyst <

poy Sealpgst)
and (4.2)

&) _ «® (pgst) o, 7))
3= ; %;, i) o™t .-S-Hpss:)

«Lpgst)

where ? is a basis vector in the composition space

and is defined by

te)

wepgst)
iy - gore g

1a < Qﬂ-‘) L V.!]”) [-Q-)(a). (4.3)

(s
Sp+xj WS
The series expansion of Equation 4.1 is convenient due
to the orthogonality properties of the Sonine polynomials

and of the Cartesian tensors. Thus under the integrations

of the form required in the calculation of the fluxes in

s mdd maa D AO lnm s mammtnde AL LS md At e alra e oivmnTla
u\iuu\-.a.uu. - sty AING de SAE2 0D p Nt de e NVt Nt e e e N e N d B N A R oY 1= e

tensorial forms
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' -% r_ -
é =Jl,zT§n,"‘, [. ‘gfruo:o) éyuou)]

T _
D = AT "*milédtlooa) (4.4)

Dy = (Pn, /nmg) (WT/2m e (LS8 s - 17 850 %

£ pliocos)

wnere only a few tensor coefficients explicitly contribute.

The effect of an external field on these transport co-
efficients is given by property (i) of the Onsager-Casimer
relationships in Chapter 3. If we represent the direction
of the external field byni, then each tensor coefficient

must be of the form

L7)=2,4% +Z,(gM-2R) - £, (Rxg®) (4.5)
o~ ¢e)
where f (¥) represents Bucpysey OF §‘(Psst) for pgst =ies0 ,

tolo; or 100i . If, for example, we consider the thermal con-
ductivity A'(%) , then the thermal conductive contribution

to the heat flux is
! a A o
é\"YT=’\'..’-+)L(?T°A-YTL)—,\' AXVT. (4.5)

The subscript labels 11 , L, and tr can be seen to emphasize
the roles the coefficients play in‘éfansport parallel to

the fieid, perpendicular to the field but in the direction
of The thermal gradient, and perpendicular to boin the fieid

and thermal gradient (transverse in the sense of the Hall



45

effect).
In the absence of external fields the tensors ﬁdl”st)
(8)

and § must transform according to the totally sym-

S atpgst)
metric representation of the three-dimensional rotation

group. Therefore, as the field strength shrinks to zero
the only coefficients which do not vanish identically will
be those which reduce to isotropic tensors (see Chapter 6).
In this limit each of the pairs of indices s,+ and p,g,
such that.g:p or ¢=ptl, vield a single term with a scalar
valued expansion coefficient. These restrictions arise
since the direct products such as [w]‘" [ g.]"”ﬁ «tpgst) contain
the vector representation (£=/) once and only once if p and
¢ are sO related (see Chapter 6). When the external fields

3 and s‘”)

are present the tensor coefficients A Sacpyse

“ipgs+
transform only according to the totally symmetric repre-
sentation of the group C, of rotations about the direction
of the field and hence are not isotropic. The direct
products of the form L[w]”[a]® Au(pgsey CaN TOW in general
contain the vector representation more than once, aithough
not all of these will necessarily remain after the con-
traction ofgthe pt¢ indices. These field considerations
gfeatly expand the dimension of the matrix fofm of the
integral equations, with an associated increase in algebraic
complexity.

To illustrate these principles we choose five functions
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of the expansion in Equation 4.1:

2 = w. ;9w 2
¢a) ) -

9o = WSy i) =i f-wi) s 907 = wons (4.7)
t3)_ m

Cp-( =W Cfl ) _‘(l-.ﬂ.‘)

where the superscripts 1, 2, 3, ¥, and § are shorthand nota-
tion which correspond to the index sets pgst = jooo , 1010 ,
jool , 1200 , and 100, respectively. These particular func-
tions are of interest because they form the truncated basis
set which we will ultimately use in our calculations. The
trial functions A, and ¢ f,_” are formed from linear com-
binations of these basis elements with tensor coefficients
of rank p+y+!, that is, rank 2for 99, ¢, 9!*, rank

Y for Q:q) » and rank 3 for gff).

In the field-free case each of these terms in the
trial functions contain the vector representation once.
Thus we can write the trial solutions in the forms
Au=Z oy du W9 ana g - z 3% 99, where a,,;, and
4.:“()‘) are scalar coefficients and the five vector trial

functions corresponding to Equation 4.7 are

)y 1¢4) €a)
0. "= 9 . PANER"RS %

102) _ g iR
f.t =2, 5 Q:w) = WK . (4.8)

)
Qim - d’f
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The transport coefficients could be computed using these
trial functions. However, this is not necessary since Equa-
tion 4.5 gives the field-free result when the tensor coef-

)
and $°

ficients A S

Ay are isotropic. That is

@
ﬁn-:) = O £

and (4.9)

S(e) 8)
¥y cu;)

The explicit expressions for the field-free transport co-

efficients are

’

J‘- '
v Zroe Y
A= Tz ART % ngm;? L-% a, ., - a-)'cﬂ]

nl
‘ -
pl= =3 =4ATn, m2" aLcy
(4.10)

h)
‘de =(Pn, /nmﬂ)(LT/am.‘)hc(f‘,, .

It is convenient to characterize the tensor
$,(V', 0, &) by the value §,t0)=£, £ which it assumes
in the absence of the external field, and by the field

distortion

A%, = $4-5, 0 = ag,, A a8, (£"-4R)-42,, (hxge), (4.11)

Thus we associate with each of the tensor g, four transport
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coefficients £, , 4&,, ., 45,,, and AL, .
To calculate these transport coefficients, we express
the integral equations in a matrix representation. From

Equations 3.12, 4.2 and 4.3, we write

()

8«.(6) = ; % A «piry) et 9’(}) (4.12)

where Q represents A or $‘° and where

a) A : cQ
Biy = ST 9 oo

and (4.13)

_A‘“(L’) - 5!4':’; f‘(‘)—l\”p z l(})'

Here, as in Equation 4.7, for notational simplicity we use
a single index to represent the set of indices pgst. From
this definition of A,., and by following a sequence of
steps similar to those in the proof of Equation 3.27, we

have

A T
Te (Magup) = Apa g, (4.14)

and thus we say that the matrix representation .A is self-
adjoint in the sense that FAT=A . This transposed, time-
reversal definition of self-adjoint is similar to the usual

transposed, complex conjugate definition.
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As previously discussed, the presence of an external
field expands the number of independent scalar coefficients
which must be included in the solution vector'gp. To de-
termine the number of these independent scalar coefficients
for each tensor coefficient, we find the number of irre-
ducible bases contained in the direct product representa-
tion. Since each of these irreducible bases will contain
one and only one element which is invariant to rotations
about the field direction, the number of independent co-
efficients is equal to the number of irreducible bases (see
Chapter 6 for a more complete discussion). As an example,
consider A, ,100) ¢+ Which is a 4th rank tensor which is
traceless and symmetric on its first two indices. It is,
therefore, a direct product of a weight 2 and two weight 1
irreducible representation bases and thus contains one
weight 4, two weight 3, and three weight 2, two weight 1,
and one weight 0 irreducible representation bases. There
are a total of nine irreducible representation bases and

therefore nine independent scalar coefficients in 4

-

al(ta00) *

Similarly, we find §4Lmow v+ Auuoy » and Auacioo)) 3re the
direct product of two weight 1 irreducible representation
bases and hence contain three independent scalar coeffi-
cients. The coefficient A s 100y 1s the direct product of
three weignt 1 irreducibie representation bases aad contains

seven independent scalar coefficients. As previously

!
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discussed, in the absence of external fields, each tensor

coefficient has only one independent scalar coefficient.

To illustrate the form of these matrix equations, we

consider the field-free case for binary mixtures of
« and g. In keeping with the notation of Equations
we can write the column vectors of Equation 4.12 in

partitioned form

) sty
(A) £ o ) | TF
ﬁ = b"*) 3 a = 9 b = (s(ﬂ) Py g =
s &p =

where each of the vectors in the function space are

_is
2 a,w
-3
2 Ayi3)
4) _ -
b, =nym; b o y &, * Ay
o Qyis)
»
% Cren
)
, 0 ¥a)
(S“) I/ Vo s)
33 = ‘7“1(2“7".- o s 37 Crn|
0 8)
riy)

species
4 - 7‘-4 - 9 ’

the

(4.15)
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Only the coefficients corresponding to Equation 4.7 are
explicitly displayed.

The matrix A has the partitioned structure

(4.16)

A l Nag

where each of the explicitly displayed elements is a matrix
element in the two species composition space. These compo-
sition elements are themselves matrices of elements in the

function space defined by the expansion in the complete set

of functions of Equation 4.1, and from Equation 3.5 can be

written explicitly as

! I <) i)
Aty =n21L 8L, 8910 w14 0T + nang [0, 0 21,4
(4.17)

'(é)

{0
"de(u) =n.ng L4, p ]ap

and

L 01.‘:), ¢'w],,s =(ngng)” [Iffd1drda’da w,; 1211'a)
(4.18)

X 12000 F gL 00 - 019 kn)]

with ¥,$ = o or g and K=lor 2.
>
The matrix equations D™=AA and 85 - _ ¢®

as given have indeterminant solutions. This arises from
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the fact that ¢ must be arbitrary to within a linear com-
bination of the summational invariants, which are the
solutions to the homogeneous equations. This singularity
is removed through the use of the auxiliary conditions of
Equation 3.2 (in particular, §IJI m_c, F.fk) (1) =0 ). Making
use of these conditions, we find unique solutions for the

.. (8)
coefficients a .., and ¢, .
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CHAPTER 5. REDUCTION Of THE KINETIC EQUATIONS

THROUGH PERTURBATION THEORY

Previous attempts (21-23) to explain thermal diffusion
in isotopic polyatomic mixtures in terms of a simple phys-
ical model are inadequate due to the importance of the con-
tributions of the internal degrees of freedom to the effect
itself. Since the present work allows the inclusion of
these internal degrees of freedom into the collision model,
physical insights into the phenomena of the thermal dif-
fusive process may be gained from an analysis of the effects
of the potential and kinematic parameters on the kinetic
equations.

The matrix equations which arise in the solution of
the kinetic equations are difficult to analyze in an in-
tuitive way, since their exact solution involves matrix
inversion of rather large matrices. Thus it is desirable
to reduce these expressions to an analytic form through
the use of perturbation techniques.

Given a set of linear inhomogeneous equations in

matrix form
y = Te ‘ (5.1)

where J is a nonsingular matrix and y is the inhomogeneity,

+Tha anTiniddsAan wrasntAr N Sae mrmivean hwrr
-l SCLNVTACnN vVelster, -, X2 giIvenl I
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c=T""y, : (5.2)

For our kinetic equations, J represents the collision
integral matrix A defined in Equation 4.13 modified by the
subsidiary condition of Equation 3.9 to remove the singu-
larity. If J is assumed to consist entirely of pieces which
are zero and first order in the perturbation, that is,

J=J,+€J,, then the solution vector may be written in the

form

c=L[1-e7]'7, + 2 3,70,3,7'7,- 17"y, . (5.3)

The perturbation solution then is ;a‘c; where

¢, =7, Y

e, = -IOMJ.I ‘To-' Y (5.4)

ca = J.O"‘InJo-'J.JJO-' Y

L]
L]
L4

and where the subscript indicates the order of the perturba-
tion.

The inhomogeneities of the last chapter are a function
Bf macroscopic variables and the number of degrees of free-
dom (Equations 4.13 and 4.15) and therefore it is convenient

to take them to be entirely of zeroth order. To obtain the



55

corresponding solutions ¢; then requires a consistent def-
inition of the zeroth and first order parts of the matrix,
J. To this end we define a matrix transformation which
will nearly block diagonalize the collision integral matrix
A in a physically meaningful way. The zeroth order matrix
will then be determined by the diagonal blocks.

We are concerned with the thermal diffusion of
isotopic mixtures, so it seems reasonable to formulate the
perturbation expansion in terms of kinematic parameters
(that is, parameters relevant to molecular free-flight such
as the total molecular mass and internal mass distribution)
about what is effectively an average molecule.

Since thermal diffusion is a flux of mass due to a
temperature gradient, we propose that the transformation
should block diagonalize the collision integral matrix in
such a way that the diagonal blocks can be interpreted as
the thermal conductivity and self-diffusion integrals in
an average moleculehlimit. The off-diagonal blocks then
become the isotopic perturbations.

As a conceptual aid in the discussion which follows it
is convenient to write the linear kinetic equations in the
form of Equation 3.3 rather than the separated form of
Equation 3.12 which utilizes the independence of the gen-

= — ~amd L Ai‘f\ssi_’n ‘Forcn

vectors,{iu} , and the thermal gradient, yT, to be the only
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sources of distortions from equilibrium contained in
(Equation 3.11), then the inhomogeneity in Equation 3.9 is
a linear combination of only these force vectors. For the

#th species,

o | 2
2
-1‘.}. 0o
- -h -?q!: YT*_ é’_(ﬂ[)&Zf (d Jd. ° (5 5)
By= nymy 0 T TP\ el zf' 7- 0 .
7] o
: :J

where the «xth species has been chosen as a reference for
removing the liﬁear dqpehdence of the diffusion force vec-
tors (see Chapter 3). Each component &, of the composition
vector will contain as many elements (which in general are
tensors) as there are terms in the expansion set of Equa-
tion 4.1 and the general inhomogeneity composition vector

is of the form -

(5.6)

b
I
&
<
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for an N-component mixture.

We now define the transformation

- ,&, --L- fd ¢ o »
2 -5, = B
- ng AL fa o [7¥¢ o
&' | R g T (5.7)
Ny L Hls L Prgpop) oo
iy (L wy P

where 4 represents a rotation matrix of the composition
vector £. The matrix operation 480 then serves to effect

a separation of the independent force vectors in the form

gT
"'17
dg _ 4
%
Abx A'—d‘ . (5.8)
y P<
v . da
7T E

That is, the inhomogeneity separates into parts correspond-
ing to the temperature gradient for the mixture and the in-

dependent diffusion forces.

Having chosen & in this manner, we now wish to define a
composition transformation matrix # such that the combina-
tion 4P~ yields the self-adjoint (in the sense of Equa-

tion 4.14) form
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[ -ATf -A-ro' -A-rpr o o o
N : P
W T Tao (5.9)
AAP" -ADrT _Aot Dp _/\D‘ pr . o o L4 .
)

Here A,, contains thermal conductivity type integrals,
"\0»0; contains self-diffusion type integrals for the auth
species, and .A;,, and A, p, type matrices contain the
isotopic perturbation integrals. Since. A\ is itself self-

adjoint and has the structurai form

-A.‘d. e -A*P -Adf . v .
A p= s Doy
A = Nya Nyp Ny -0 | (5.100.
1

Choosing p'= 47 yields the self-adjoint matrix prodact

AAsT. The total transformation can then be written in the
form

A0 = (AAP)PH), (5.11)

Since we have chosen # '- 47 , we have also that

f=(4")T . From Equation 5.7 and the distortion § of

Tlamasmbd men 2 T1 TP  ADAR T
WY LD e\l - B ey e  wwmee @

Atk a
ilzTe
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| (p;),.l [ I \
¢ M))Iﬁ i’ d ”",,,;7.” ' (5.12)
PO = (X) = _ . -
( Ty _;r_ } Suv £ - £,) ¢”

S T

If we now use Equation 3.13 to express the mass and heat

flux vectors of Equation 3.17 as

-(wi+nd i )]
g'= ATGATY [y fia & TE 2 4w 5000 - 5 )]

~(w?+.n3) Soul-/ )
Tp- oarliufip T %“3:( T e

where S;n(x’) are again Sonine polynomials, the direct cor-
respondence. of #§ to the independent flux vectors is seen
from

Q' = AT (2T fdw [dn e""a*'“z)(rf)q, w [- S;a')cw‘) - S.f/f (n.")]

and (5.14)

3, = 1247 [dw [ia e (i “’5)-1,. LA

Note that we have chosen Ju as the reference vector to re-

mratra +ha Tinasr Aanandoanrmrae T o
mowve The Linear coponcence B

i

O

X|

Lastly, we note that the first row and first column
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of 4A ¢ .are identically zero. That is, the first row of
Agp e J\.,;D‘ ¢ Appe oo and the first column of A, -Ap,r'
Ap, 1t -+ are zero. We choose to remove this singularity
by arbitrarily setting the 1,1 element of A equal to one,
and then replacing the first element of the «th composition
vector with the relationship between the expansion coef-
ficients derived from the subsidiary conditions in Equation
3.2,

; n,,ﬁj;{-(:u)h}] - %‘)z =p, (5.15)

o M1000)

r ®
T +n§§#(lou) (

S

Finally, we emphasize that 3 AP’ becomes a block diagonal
matrix in the limit of the average molecule.

We now wish to apply these general perturbation tech-
niques to binary systems. In this case, the matrices as-

sume the forms

‘Ad& _.A.‘p
A=
A .
£ s (5.16)
g frg
A =

VA L (Y
Tuly Pale

-—

and
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[ na n
e aPag
P = . (5.17)
17 Pl
- faln el
~ F vrg !

Here and in all other matrix equations in this section,
each of the explicitly displayed elements is a matrix ele-
ment in the two species composition space. We again em-
phasize that these composition elements are themselves
matrices of elements in the function space defined by the
expansion in the complete set of functions of Equation 4.1.

The transformed Equation 5.11 is now of the form

68, T (22 (7‘ ‘,—) (3¢ ed), X5 +2ae703) (éz 47..) (5.18)

. : dy  da .
and since the generalized forces 171._7.' and (7: - P‘) are inde-

pendent, this is equivalent to the two matrix equations

™0 Ar
O -Ap'r 'Aﬂ‘D AD
and | (5.19)
0 | A “rp Sr
D, Aot Ao 5,

Here the subscripts T and D on 4, ¢, and P indicate that
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these transformed vectors take on forms that we associate
with thermal conductivity and self-diffusion, respectively.
Furthermore A,; represents single species thermal conductiv-
ity type integrals, A,, the single species self-diffusion
type integralé, and A,, and ., the isotopic perturbation
integrals. Defining the thermal conductivity and the self-
diffusion integrals to be the zeroth order elements in

the isotopic perturbation parameter ¢€,, and the first order
elements to be the isotopic perturbation blocks, we find

that the solution vectors to zeroth order in €, are:

-1
Ar =Aer B 5 Ap =0
(5.20)
°31' =0 ’ oso =-A;:; D, .
The first order solution vectors are:
IAT =0
t C - -t
Ap ="Aolp Nop Nrr B¢
' (5.21)
- -t
Ir = ~Ner Ao Ao D,
i
gp = 0 ®

Here the order of the perturbation is denoted by a super-
script to the leit of the symbol for the solution vector.

From Equations 4.4 and 4.10 it is seen that the
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coefficient of interest for thermal diffusion is A yi1000y °
The method of removing the singularity of .A with the sub-
sidiary condition of Equation 5;15 requires that A, ..,
is identically zero to all orders of the perturbation, and
thus we see from Equation 5.20 that the lowest order nonzero
perturbation solution vector is ‘A,. It is easily shown
that A, (and in fact all even order perturbations of 4,)

is zero. Hence it is likely that %D is an adequate ap-
proximation to A,. (This is confirmed by calculations in
Chapter 8.)

The expression for hp is.a matrix product so further
simplification is desirable. It is possible to perform yet
another perturbation expansion on each of the blocks con-
tained in the transformed collision integral matrices,
4A P, The rationale for this further perturbation expan-
sion is that there is a dominant elastic contribution to
the molecular scattering cross sections. We can in principle
construct a spherical collision operator from these elastic
cross sections, or equivalently, from the corresponding
transition rates. This spherical collision operator, of
course, does not affect the molecular angular momentum part
of the expansioh set terms and hence in the spherical col-
lision integral matrix, all collision integrals correspond-

rank in the angular momentum are zero. That is, the
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spherical collision integral matrices are diagonal with
respect to the angular momentum.

For the true collision operator, these off-diagonal
elements are nonzero but small in comparison to the dominant
diagonal elements. This suggests we can fprmulate a per-
turbation about the spherical limit or alternatively, we
can take the total diagonal blocks to be the zeroth order
matrix. To simplify the expansion we choose the latter
alternative. For example, the zeroth order matrix of
in our "nonsphericity" perturbation contains the exact

diagonal elements

p

'Qnm) Qag12) Aasus) (4] O
Aasiad  Daseaz)  Apgias) 0 0
o, Apgis) Apas AasE3z 0 0 ..
Npg = (5.22)
o o 0 ..Q»B(,l.l) O .o
° 0 ° o Dagiss)

where A and B are either T or o. This is in general an
infinite matrix corresponding to the complete set of func-
tions in Equation 4.1 but only elemenﬁs contained in Equa-
tion 4.7 are explicitly displayed with corresponding sub-
scripts. The first order perturbation nonsphericity matrices
contain 3ll the clementes neot included in zeroth order.

Marking the nonsphericity perturbation expansion by
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€,, We can write

0 =i o -1 e, -t I o, ~! © o, -t
= €, { -Apo or Nrr T €a E"‘ Aoy J\rr +App Aop App Aoy Arr
0. - - 2 ] o .-t o o,
++AI;D?AMCA : -"'rr + €, F-’\np o0 Aoo Nop Apr Nrr
' (5.23)

0g=l 0 -t I o -1t 0 ,~t I ] o~
tApp Apg Nop Aor Ary ~HNop Apr Arr Arr Arp Arr Arr

Our choice of the zeroth order matrices causes the first
order contribution in €,to go to zero. This behavior is
particularly useful if we wish to analyze the specific
pieces of fhe thermal diffusion in terms of single species
thermal conductivity and self-diffusion, as is illustrated
in the following equations.

If we again display explicitly only those basis func-
tions which appear in Equation 4.7 and emphasize that the
form will hold for the general expansion of Equation 4.1,
the matrices to zero order which appear in Equation 5.23

are
-1
A, _.Sm 0 o « . .

]!
0 LAppvyy € ] 0 )

0 -}
A -
0 o Maigs) S |
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and | (5.24)
f .
G° £(, o o [ e o
&) .. -
R o ‘Aoruv) ‘é o
'-Aor = 0
o o J\nnss) $

.

where the subscript A represents T or D and correspondingly
A, represents 7, or p,. Here p,, T,, and ¢, are the 3x3

zero order matrices of the diffusion, thermal conductivity,
and isotopic perturbation. The first order matrices in ¢,

are given by

)
9 €2 Mpagp ) 2 €2 Mptis) §°) s
€. A st
ES AR ('l") H o &3 ‘Aﬂﬂ(‘ls) §“, 0.
A, = i
AR )
(£, o
€3 App (s3) ._s‘@’ EaApisn 2
and (5.25)
( .
2 €a 'AD'I’( L9)§ ") €, -Ap‘rl.l’w‘) § @ e
€. A Sw) 3)
. ) a-'orcy;) 3 o €a Aor(ys) 2 v v
Aor ~ ) <)
(31
€xdpr(sp 3 €3 Noresy 2 °

: :’ ]
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where again A is either 0 or 7 and where A;;)and 4., rep-
resent the 1l x3 matrices of the thermal conductivity

(&r2) ;5 a tensor of

integrals (¢ and §y =/, 2, or3), s
rank (4+£) which is the matrix element of two basis set
terms of rank A and £, respectively, and 0 implies a 3x3
null matrix. Substituting Equations 5.24 and 5.25 into
Equation 5.23, the solution vector to zero order in

becomes

lébo = -D°-| G° T;'BT é.(l’ (5.26)

and to second order in e, becomes

1,2 = - - (are), 2274 0 _caem) -
Atz 2 006, T Arriimy S @ [Arrcnm § 170" s ™ Ay §u " B

2 2 . 2 21 0 (hem) -
'A’(a) = )\Zsy DO "ADT“.II) g“")a [ATTLII) ;’-J o é AT?(’\’.) T‘ ! n-r

o , (5.27)
- - ) o ¢ QG
‘#0) = nz., 0 Aopcin 2“'")"' I §mﬂ o [Aprim ™) [Ary my §2°] @
' (a+m) -
§ ‘A‘Tt(n;) T" DT

.2 2 - a1l g (2+m) ol
A “) = Z' P Aooiem S“")o'[-h”um) § ] @ § J‘pr(»,) To 81'

i -1
1,2 -t ' 2e]"Le o (trm) I
Ao (8)= E'-I O Aopim $*T )‘02 [4ppinny S J @5 Appinp) 0 6T P, .

Here the left. and right superscripts label the €, and €,

perturbations, respectively, and the number in parentheses
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labels thé five terms of second order in g,.

The thermal conductivity and diffusion'type integrals
in Equation 5.19 are for a binary mixture of isotopic
species. We suspect (and model calculations verify) that
these integrals are not sensitive to isotopic changes within
the moleculés and can therefore replace these isotopic
mixture integrals with integrals corresponding to single
species thermal conductivity and self-diffusion, where the
single species is defined by some average of the isotopic
species. The isotopic perturbation blocks Ap; and 4., are
identic§lly zero for a single speéies so if we perform a
nonspheficity perturbation for single species thermal con-
ductivity and self-diffusion with the same zero order ap-

proximation as was assumed above, we obtain the expressions

rg -

AL = =T 0, g

_’- = $ - ) - (‘fﬂ) -

é" ) -v?-:q T"Afﬂ"-n) '5(“‘ 0! LArrcam 56“)} ".‘,5 Arriapy To By
(5.28)

_—‘ - -1

-7 2, bp EO)

e* - _iy -1 (A+) g 5""))—‘0' s(un) -

2e ° S P. A»u.»)?, (] [-A”(,,,,) 2: 2 "A”C"H Do ‘00 )

The “"bar" over the coefficient indicates that the coef-
ficients are for an average molecule. If we substitute

these expressions into Equation 5.27 we f£ind the thermal
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diffusion coefficients to be

° =57 7 50 | (5.29)

=0 » e Ty

in zero order and

- —T —
Al = 6 A%

Qrm) —5

gtan =t t,
J T'r(n;.) § T

I3 - rcid (Lu) 2
Q (2) Z SD 'Abr(.uué l:-“'r"r'um)

=2 L &7 ) 2
QD (3) =nz:q S’ Noocm S S“")@t LAo0enm) §‘“J e ["\or(un)su?a 30)
LM rrenmy §(=o)] ° §(hm-/\-rrcn,.) A,:

—_—T

- ‘
() =2 8§ Npprm 5“")" Lhopenny ""§“+N)“Aonn;) Az

in second order.

The five second order terms above may be split into
three sets according to their external field dependence.
The coefficients 'j; () and 'fjca) contain the magnhetic field
dependence of the single species thermal conductivity co-
efficients, 'A7(¥) and '} (s) contain the field dependence
of the diffusion coefficients, and 'A,(2) has a hybrid
field dependence. For the mixtures we will consider our

model calculations show that this hybrid field term is

s2ll a2nd thue we oan write the second order offect as

(=233 A bbb e X3 -—_-- -

the sum of a modified thermal conductivity contribution
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and a modified self-diffusion contribution. It is this
last analytic sum which provides a means to investigate

thermal diffusion in terms of the molecular parameters.
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CHAPTER 6. CARTESIAN TENSOR REDUCTION

Cartesian tensors may be used to form a basis for a
rgpresentation of the 3-dimensional rotation group. For
eicample, a 3-dimensional vector, A (which is an element of
the vector ‘space spanned by the usual unit vectors 1, i‘ ‘
and 1), is a first rank tensor of weight 1. It forms a
basis for a representation of the 3-dimensional rotation
group whose elements are second rank tensors. If R is the
usual rotation matrix, the operation R:A serves to rotate
A into a new vector A', that is, A'=R-A . Performing a
second rotation r_j'-a'= A" is equivalent to the single rota-
tion R”-4 = A", where R"“=R'- R . This defines the group
operation. Expressed in ma&ix form, the vector A is a
'colﬁmn matrix of three elements whereas the rotation oper-
ator & is a 3x3 matrix. The identity element for this
representation is the symmetric tensor §‘f) =f1 +5% +4%,
The eigenvectors of g“) are just the unit vectors ¢, %,
and £ with eigenvalues of 1. Of course, they are not
unique siﬂce any linear combination of these eigenvectors
is also an eigenvector. In a similar manner we can extend
these ideas to higher rank tensors. For example, a second
rank tensor is a basis for a fourth rank representation of
the rotation group. Expressed in vector form, the second
rank tensor is a column matrix containing nine elements ana

the fourth rank representation is a 9 x9 matrix. In general,
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the number of independent elements in a 3-dimensional tensor
of nth rank is (2)". Thus, the dimension of the represen-
tation is (3)".

Let us now consider the subgroup of rotation operations
consisting of only rotations about a fixed axis, that is,
the 2-dimensional rotation group. Any basis for a repre-
sentation of the 3-dimensional rotation group is also a
basis for the representation of the 2-dimensional group.
However, a basis for an irreducible representation of the
3-dimensional rotation group in general is a basis for a
reducible representation of the 2-dimensional rotation
group.

The collision integrals we calculate are isotropic
tensors, that is, tensors which are unchanged by any rota-
tion operation. Likewise, the expansion coefficients of
Equation 4.1 in field-free space are isotropic tensors.
These isotropic tensors form a basis for the totally sym-
metric representation of the rotation group. In the
presence of an external field, the expansion coefficients
are anisotropic in 3-dimensional space but must be
invariant to rotations about the field. The formal cal-"
culations of the lést chapter aré greatly facilitated

through the consideration of some general group theo-

From group theory we know that for the 3-dimensional
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rotation group the direct product of the bases of two ir-
reducible representations of rank p and ¢. respectively,
forms a basis of rank (p+¢4) which is in general reducible.
It can be resolved into irreducible bases of weights
tp+rg) , (p¥g-1) ,(prg-2) , ..., Ip-3l. For a weight £ ir-
reducible basis there are (2%+!) independent elements.

The quantity (22+1) is thus the dimension of the irreduc-
ible basis. Since Cartesian tensors provide bases for the
representation of the rotation group, they conform to these
general group properties. For the remainder of this chap-
ter we will consider Cartesian tensors exclusively.

There is, of course, an identity element 8" for the
direct product representation as well as identity elements
gf” for each of the irreducible representations it contains.
Here n is the rank of the direct product basis and
Qm =Z zﬁn) . The identity elements I{" are isotropic
tenéors of rank a2n and since they belong to different ir-
reducible representations are orthogonal to each other,

that is,

.I:MO" ;;") = ;:M ;lq : (6.1)

Thus, they act as projection operators in that they will
project out of any given tensor in the direct product basis
\

the part of that ténsor which lies in the irreducibile

representation corresponding to the idenéity element.
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The perturbation expressions for the thermal diffusion
coefficients in Equation 5.27 and 5.30 require that we cal-
culate the inverse of the diagonal matrix elements. If we
for simplicity, first consider the field-free case, these
diagonal elements will be a linear combination of collision
integrals of the form given in Equation 4.13 and thus can
be expressed as an isotropic tensor l*”’. Here the rank of
T‘” is 2n, where n is the rank of the associated basis
function waPEnJ“) that is, n=(p+g). By the inverse of

I, we imply

T™Men [Tw]™ = g (6.2)

¢(n)

We generate the inverse of T‘” by first projecting T

onto the identity element, I” , of the ith irreducible
representation contained in the direct product basis. This
operation gives back the identity element times a scalar

coefficient «;, namely

T IV = IV, (6.3)

Thus projecting I*”) onto g‘ﬂ transforms the general
isotropic tensor into a linear combination of identity

elements of the irreducible representations, that is,

‘_r(h-) - I('\’ ﬁa(") T(") Z LR) Z "h). : (6-4’)
= = [ [
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The inverse of l‘"’ is easily found from Equations 6.1 and
6.4 to be

[z«,z1™ = z = I, (6.5)
Therefore, the problem of finding the inverse of our
diagonal matrix.elements has been reduced to finding the
identity elements of the irreducible representations of the
3-dimensional rotation group.

An altérnate procedure also exists for calculating the
inverse of T‘"’ by assuming a preferred direction. Since
I*") is invariant to any ro;ation, it is also invariant to
rotatioﬁs about the preferred direction. The identity
element for the direct product representation can then be
decomposed into a sum of identity elements for the irre-
ducible representations of the 2-dimensional rotation group
just as explained above for the 3-dimensional rotatian group.
Again, projecting T onto any of these identity elements
will project out of T* that part of T‘” which lies in
the irreducible representation corresponding to that
identity element. Thus using the 2-dimensional identity
élements gives the inverse in a form similar to Equation
6.5.

| The irreducible representations for the 2-dimensional

rotation group are all one dimensional. Thus, the direct
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product representation formed from the direct product of
two Cartesian tensors of weight p and y will contain
(2p+l)C2;+ﬂ) irreducible one dimensional representations
of the 2-dimensional rotation group. In contrast, the
direct product will contain ag+! (where g<p) irreducible
representations of the 3-dimensional rotation group.

The identity element for the highest weight irreduc-
ible representation of the 3-dimensional rotation group
formed from any direct product basis is denoted by g‘“’,
where n is the rank of the direct product. The tensor
§‘M is of rank an and is traceless and symmetric on its
first n and last n indices. If we denote the orthogonal
eigenvectors of 15“” by the symbol ¥, (n), where n is the
tensorial rank and m, -nsm=n, labels the (an+:) independent
eigenvectors, then

S = S Fcm ¥ or ) (6.6)
msz-n
where t denotes the transpose conjugate. If we choose
these eigenvectors such that the direct products thn)?;f@)
are the identity elements for the one-dimensional irreduc-
ible representations for the 2-dimensional rotation group
contained in $‘”, then they form a unique set. We now

wish to determine this particular set of eigenvectors,

FROR
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Cooper and Hoffman (32) have written the 3-dimensional

(n)

identity elements, § °, in terms of a sum of real tensors

) . . . .
§,:'(n) which are traceless and symmetric on their first

and last n indices, as

n ta)

s = B8, tn). (6.7)

= mao

To make the connection with the present discussion we note

that the quantities __@,(:)

(n) which they define are them-
selves identity elements for mutually orthogonal represen-
tations of the group of rotations about the preferred

direction in 'space. The tensor g, *

(n) is the identity
element for the irreducible totally symmetric, one-dimen-
sional representation of the 2-dimensional rotation group
whereas é:.ﬁ(n) . m>0, is the identity element for a two-
dimensional reducible representation of the 2-dimensional
rotation group. - They further define a group of tensors

g-"tn) by

m8m =8 mh A28 0m , (6.8)
where X denotes the sum of the tei:ms obtained by crossing
L into each of the n right (or left) hand indices of

ta)

B, (n) . It is shown in reference (32) that these defini-

tions give the following muitipiication reiationsnips:
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gme g tn) = 85w £,

=m

u.)

Bm (n)o" g, ,cn) =~ Bp (n) &t (6.9)

) (b) th)
8% %m 6" e,,, =g Bor tm)0" 85 70n) = 81 im0

¢n)
We now construct a set of tensors @, as

£n) (a) ] to)
th = Ji [g”‘.‘(n) + 4 E-"‘ (h))

ol sl -i g (6.10)

n)

Qo =B°“'n<")

vwhere i is the usual imaginary unit, that is, £2%*=-1.
From the orthogonality relationships of Equation 6.9, we
have immediately that

tn) tn) tn)
Stm O“th' - Q*n Seam!

(6.11)

(

: O 9— 00

From Equations 6.10 and 6.11 we conclude that the set of
Q,‘,"’, -nsmsn, contains (an+1) orthogonal elements labeled
by m, each of tensor rank an and contained entirely in the
irreducible representation formed from the direct product
basis of weight n. Thus each Q(,:) 1s necessarily an

identity element of an irreducible one-dimensional

i
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representation of the 2-dimensional rotation group and we

have

figs
~
3

L tn)
=Eh a, (6.12)

which also follows directly from Equations 6.7 and 6.10.

From Equation 6.11 and 6.12 we make the correlation

)

al =% iT . (6.13)

It follows immediately from Equation 6.7 and 6.9 that
B(n)

x (n) , the eigenvector corresponding to q"" B, ., is

? = _L‘“’ef'(l-)"
Xotn) - [L‘I)hon £Ln)an(£)ll]& ’ (6.14)

A

where (2)" denotes a polyad of n A%, that is, AL... L.

The tensor f,(n) is obviously an eigenvector of both Q:")
and §' with eigenvalue of 1.

To generate the explicit expressions for the remaining
one-dimensional eigenvectors f,,. (n), we construct the fol-~
lowing operator formalism. Let us define the Cartesian

E(n)

tn) tn)
operators H, . , and Hy by

; t»)
By Zmig™xd =-iZ m By (W

6.15
o ( )

x
~g
m
\
.
"
3z
~
>
n

_*ZMB Y
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n . )
B = i ST e i Zom B M),

where as in Equation 6.8, the symbol X indicates the sum
of terms obtained by crossing 4 (or £ or§) into each of
the n right hand indices of §"') and now the subscript x ,
Y., or # corresponds to crossing £, §, or 4, respectively.
The unit vectors {, %, and & are assumed to form a right-
handed coordinate system. We can also define the operators

Acn) An) A (n)
Hy =Hy +4 Hy

and (6.16)

(n Aln) L Atn)
- THy -4l

N
H
=
If we now define the commutator bracket in general as

Atn) *(M] = A(n)on ﬁcn; AlR) _p ALR)
=8

Hy o i, (6.17)

y* )Hl = H,
and consider explicitly the commutation of #," and H{",
we have
rg;u)) g;u)] s v(tx ;"’0'5“)2? _ ;tgcu)enéu)t f)
(6.18)

=-(3X5V%F -5I5"xt).

In the Appendixwe show in detail that this crossing operation

leads to the commutation relationship
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A(ul Atn)) iz =£c-) = -4 E;"’. (6.19)

In a similar manner, we find that

2 (n) AL») A Ln)
f" = =L ”x

Arn) ‘\Lu)]_ . Ay
NP M e M

ALR)  ALn) Aln)

gi Jé,* H, (6020)

(LY PN ” vA
[.-.ri 3 Qf '] = -=H'-‘:“)

A(n) AN} = Atn)
B8] =2

If we now define

An))R _ An) . Aw) Aln) Atn) Atn) " en)
@ = Be B B0 B ¢ B ey

H, v y (6.21)
then it follows immediately that for s=x, y, or z,
Aln Aln) " -
L4, s0=0 5 LAy ,0471=0
" » 2 » -
[a)?, s=0 5 [(ET), i) =0 (6.22)

[-(Qw)a , Q;n)] =

It is of some interest to note the direct corre-
spondence of the Cartesian tensors to the more tamiliar

spherical case. The eigenvectors, ?m (n) , are analogous
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to the spherical harmonics and the Q operators are analogous
to the angular momentum operator, J.

From the commutation relationships in Equation 6.22,
it is evident that (l;i\“")z h‘;” , £, and g,‘.."’ can have a
set of simultaneous eigenvectors which we denote by ')?,.. (n)
where again m labels the independent eigenvectors of tensor
rank n. The following arguments show that in fact the
choice of this set of eigenvectors is unique.

It follows immediately from the definitions of X, (n)

Aln)

in Equation 6.14 and H; in Equation 6.16 that ?,(m) must

be an eigenvector of H;"

with an eigenvalue of zero. That
is,

A 6™ Rtm 200 X, 0m) .,

As in the more familiar case of the angular momentum we can

show from Equations 6.16 and 6.21 that Qi") and H‘_") are

the raising and lowering operaf:ions with the properties

(n)
HY 0" Kntn) = Yinomi (nem 483 Kpmey (1)

and (6.23)

N n A
He @ Xu(n) = Tnemdlnemer) X, _ L0

where )?_Ln) are eigenvectors of _H‘_‘,‘_, obeying the eigenvalue

equation



A¢m)
ﬂ;" o"f,__m) = m ;m(n) , —nEmsn. (6.24)

ALn)

'All of the (a2n+t) one-dimensional eigenvectors of Ha

generated in this manner span the space of the irreducible
representation containing the identity element §‘"h Fur-
thermore, since the eigenvectors for each of the (an+:)

)

. . . . 4 .
. one-dimensional projection operators g,: are unique and

») ALn)
Q:. and ﬂ;" commute, it follows that the eigenvectors of

Q?ﬂ are identical to the eigenvectors of the one-dimensional
projection operators. Hence, determining the (an+:i) eigen-
vectors of Egﬂ by means of Equation 6.23 provides a method
for finding all of the desired eigenvectors ¥,.(n). We show

in the Appendix that (E‘”)a is given by
(f"”)z = n(n+t) £“') . (6.25)

Thus it is easily established that the vectors X.(n) are
also eigenvectors of (1_?"")z with eigenvalues n¢(n+) .

To this point we have generated only those eigenvectors
which belong to the highest weight (n= p+¢) irreducible
representatibn formed from a direct product basis of two
irreducible representation bases of weight p and g, re-
spectively. However, the close correspondence of the
theories for the Cartesian and spherical harmonic bases
suggests that by appropriate formulation of the direct

product operations for Cartesian tensors we can obtain a
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direct correlation to the more familiar problem of the
addition of angular momenta. This correspondence will
allow us to express the eigenvectors of the lower weight
irreducible representations of any direct product in terms
of the eigenvectors of the direct product bases through
the use of Clebsch-Gordon coefficients. We now outline
this formulation.

Let us consider a tensor g") of rank 2¢, which is
symmetric and its first and last ¢ indices, imbedded in a

F(P)

tensor of rank 2p which is symmetric on its first and

last p indices, where the indices are ordered as in the
direct product Lwl[aff Lw]®[<2]}®) . The resulting

tensor which is of rank 2(p+) we denote by F‘?/5‘). Then

A

the H operators for the direct product representation may

be defined as

A

zstpq) . E;’)/;S.")f ém/&:ﬂ (6.26)

where s is either x, y, or z. As shownin the Appendix, we

have also that

ol
(ﬁloq))’ =D 30341 I;P"i) . (6.27)
= s21p-4 =

With these definitions all the commutation relations listed

2o Drmeadlam~ 2 10 N amA & 9% TWhATA £Ar +ha Airact
dedd AP UR IO Veds >y RAdt W S el AAN kA de e eanr e e -

-

g
) ¢peg) A (n)
product operators, ¥ . ‘The operators H ' of the
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preceding discussion are simply that part of E?" ‘Pin the
highest weight irreducible representation of the direct
product. That is,

B:uq) = glpq) o”*t gsthi)on’, :Scng) . (6.28)

Furthermore, the (2¢+:)(2p+:) simultaneous eigenvectors of
(%*%)* ang #57*1’ are unique and since these operators
commute with thé (2g+)C2p+1) identity elements of the
irreducible representations of the 2-dimensional rotation
group contained in the direct product, the eigenvectors

must in fact be identical to the desired basis vectors of

A
the direct product, which we denote by Y: ’(1-). Here M
labels the independent basis vectors of the j.th weight
irreducible representation formed from the irreducible

basis vectors of rank p and ¢.
Fram our previous discussion, the highest weight

eigenvectors (4 =p+g) are
(6.29)

N P A
YM’(pfg) = X"(p+3) ’
but no such simple expression exists for the lower weight
These can, however, be expressed in terms of

eigenvectors.
the direct products )?,,u) )?n,(g) by the use of Clebsch-

The construction of these relations

Gordon coefficients.
will not be given here in detail since the procedure is
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exactly that of the familiar angular momentum case. We

find that

o
Yn'(t) =2 Clpg,gimm) ;M‘P);n"s)
m,m
{mnn‘:l"}
and | (6.30)

A A . AP
X (P) Xpat (9) = % Clp, §,45mm’) Y,.,‘(;) )

where C(p,q,§ ; m,~) are the Clebsch-Gordon coefficients (33).
The identity element for the direct product representation

can now be written

370 . poyew 2 3 1,00 (6.31)

From this equality we see that

RS b ?;-' A X () T2 X5 ()

mz-p m'z-g
or (6.32)
*
2078 o i Yo (#) Y 'q)
$:lp-gl n=-3
since
A At
T"") - % Y"IA\ Py 12a) (6-33)
— 1=, ‘M VW tm e :
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(p+g)

We may also express I in terms of the direct product

basis as

"*f) nz- [Z Z zz X o) Qm,lg) X o) ?;(‘3)
4 {mem' -H} fnen'=mM}

(6.34)
X epg,5, mmm e (P.9,% 5 n,”'"ﬂ )

where C(p,q,3;m, ) are the Clebsch-Gordon coefficients.
We are now prepared to calculate the inverse of the
diagonal elements required in Equation 5.27. From Equation

3.3, 3.5, and 3.6 the form of these elements is seen to be

Aarcid) = IL"’) +F o X, i, (6.35)

where L‘“’*‘) is a 2(p+g) rank isotropic tensor which is a

sum of collision integrals, ¥ is the scalar coefficient for
the field terms, and x% indicates the sum of terms obtained
by crossing Ak into the last ¢ indices of 3"’7) . From Equa-

tions 6.15, 6.24, and 6.31 we have that

2('*‘)x I = S(')/g‘f)xti = :(P)/‘:ﬁlf)

(6.36)
= L”Z:-’ i_’m X <p)x,,.¢3) X p) x ) tg) .
We can also write
A At
T""" 3 o ;t»g) - f t a, Y,,"l;-) Y,."U)- (6.37)

Al T
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If we now interchange the summation order on 4 and M and
la)

then use Equation 6.30 to express Y:’l;) in the ?,,, (p)?,“,(s)

basis (and for the sake of definiteness assume that pag),

then
(p+§) A A AT
T B8 . st
Mlzﬁ-ﬂug,ns m-g (P‘b sPTHI M, m) Xom fP) ¥m-nt8) Xntp) Xu-nL')
[t 1
* (6.38)
+ B(P,:,)P §ls prf; mn, H) p A lp)X"_ (g) X ) xn_ “8)
M=-|p-4I n,n:n-x
=ip-gl-1 -M+§
t i Z Bl g, iml,peq; ™mm) xn‘ﬂ)’n-n‘ﬁ) Xn(P) XM " 3)
:-' , ”m ﬂ:‘P
where

Blp,g,h Ly m,n, M) =
(6.39)

3=Z‘Ld’C(PJ?;; myM-m) C(p,4,25 nyM-n).

By combining Equations 6.36 and 6.38, we see that A,;,is

given by

‘Ak‘(“) [ iB‘PJz)"Jp*' ; ”‘,")n) + ‘C 7‘”‘") S"ﬂ?
M= pege M,nx n-g

l"’ *t
+Z i {B(P;z;l?'ﬂ,p*‘;m,n,m) + i ?(nm);m}

Mz-lp-g) MnzR-g
SIEET e S.5
+ {B(P;’)'"’,P*[,Mnﬂ)u.?(ﬂ h)S }
Mz-p-g n.ﬂ"P

N'
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n AT A T+
XX tP Sy 1) Fatp) i3] -

From Equation 6.40 it is evident that A,,., is a block
diagonal matrix where the total number of blocks is de-
termined by the possible values of M and the dimension of
the blocks is determined by the m,n summation. Thus to
find the inverse of A,,we must find the inverse of a block
diagonal matrix, the largest block of which is of dimension
(2¢+1)

We note that Equations 6.38 and 6.40 have been written
for the case where p2¢. For g>p, we simply interchange the
p and g indexes in the m,n sumation and replace M-n by n
in L(mM-n)%§,,. We also note that the choice of representa-
tion for comﬁining Equations 6.36 and 6.37 is arbitrary. .
We have chosen the direct product representation for sim-
plicity in the performance of the index contractions which

are required in Equation 5.27.
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CHAPTER 7. STUDY OF MODEL PARAMETERS AND COMPARISON

WITH EXPERIMENT, NUMERICAL RESULTS

Our goal in the present study of thermal diffusion is
two-fold. First we wish to utilize the sensitivity of the
effect itself on the detailed nature in which molecules
interact as an experimental tool to parameterize the
molecular collision model. Secondly, we would like to gain
insight into the nature of the physical phenomena involved
in the thermal diffusive procéss. In this chapter we will
use the full set of algebraic equations (as given explicitly
in Equations 4.12, 4.15 and 4.16 for a binary mixture in
field-free space) to study the intermolecular potential
parameters and to compare our results with experiment.
These calculations then provide the "exact" limit for the
perturbation study of the phfsical phenomena in Chapter 8.

The truncated basis set we choose for our calculations
are those five terms which are explicitly displayed in
Equation 4.7. There is considerable evidence (34) that
this limited basis set yields adequate approximations for
the transport coefficients of a single component gas. How-
ever, since it is known that the distribution of angular
momenta is of little importance for these simple gas
transport coefficients but can have a significant effect
upon the numerical wvalue of the thermal diffusion coef-

ficient (27), the basis set of Equation 4.7 may be
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inadequate for a quantitative comparison of experiment and
theory. This basis set does at least include the two lowest
order symmetry types (functions which are odd and even in
the angular momentum, that is, with time reversal eigen-
values of +1 and -1, respectively) which can contribute to
the anisotropy of the angular momentum distribution. Add-
ing more terms to the basis set increases the number of
algebraic equations, so the inclusion of more basis func-
tions is best explored in terms of éhe perturbation tech-
niques of Chapter 5.

In this work we compare experiment and theory for
binary mixtures of isotopic diatbmic molecules. This choice
is occasioned by the availability of good experimental data
(35) and the fact that these are the simplest systems which
exhibit thermal diffusion influenced by the internal struc-
ture of the molecules. To account for this internal struc-
ture we choose the rigid ellipsoid of revolution as our
interaction modél. Previous calculations (36) have shown
that the detailed structure of rigid models of the same
general shape has little effect on single species thermal
conductivity and viscosity. We expect similar behavior for
mixtures and for thermal diffusion and thus have chosen the
rigid ellipsoid collision model for mathematical convenience
in OUrl CaiCulallisciis. ’

The potential parameters of the rigid ellipsoid model
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are <o 2> = average cross sectional area, R = ratio of major
- to minor axis, and § = separation of the geometric center
of the ellipsoid from the center of the bond. The macro-
scopic parameters are the mole fractions and the tempera-
ture. The total molecular ﬁass and the distribution of the
atomic masses within the diatomic molecule are fixed by the
relative masses of the atoms in the molecular species under
consideration. We consider these mass differences to be
kinematic parameters which are model independent and thus
for present purposes need only consider the potential
parameters and the macroscopic parameters.

The thermal diffusion factor, «;, which is defined as

’ DL
e
qT = n M.r."‘, X‘,XA ‘Bﬂp (701)

is the property which we will calculate to compare with
experiment. We begin our study by using binary mixtures
of CO molecules to examine the effect of the potential and
macroscopic parameters on «; in a field-free space. For
binary mixtures and the truncated basis set we have chosen,
the column matrices in Equatibn 4.15 contain five elements
and the matrix in Equation 4.16 is of dimension 10 x10.
The explicit expressions fog the transport coefficients
themselves are given in Equation 4.10. We emphasize that

from a qualitative viewpoint the results of these parameter
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studies are independent of the species chosen. We use CO
mixtures only for concreteness and because of our future
interest in comparing theoretical and experimental results
for these mixtures.

| The differential cross section for a rigid model is
independent of the energy of the interacting molecules.
This fact ultimately leads to a T4 dependence for both the
thermal diffusion,DQ', and b;nary diffusion, L., , coef-
ficients. Therefore «+ is independent of temperature for
the rigid ellipsoid model. We also find that «, is es-
sentially independent of the mole fraction, X., and average
cross section, ¢cr>, as illustrated in Tables 1 and 2, re-
spectively. We note here that the perturbation expressions
of Chapter 5 predict that O« is nearly independent of mole
fraction whereas 0. should contain an X.Xs dependence.
This leads to the fact that o is independent of mole
fraction.

The remaining two potential parameters, R and S, have

a much larger effect on «+. In Table 3 we illustrate the
effect of varying R from 1.0 to 1.3, which spans the
realistic range of molecular shapes for diatomic molecules.
By varying S we are in effect moving the center of mass

within the ellipsoidal shell. These variations in S may

~ PR R, VORI TR Tk S 31 v aTlAanme +hhoa matAr avia
na,,or 2=

— A M2 -
ChiCuULTWw Dy DN.J-LU.LL;g CIIC @ vonie dwrdany  wrans sty

within the ellipsoid while keeping the bond length fixed.
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Two isotopes have the same value of S since the electronic
structure is little affected by isotopic differences in

the nuclei. The dependence of xron S is shown in Table 4.
A positive value of S implies that the bond center is dis-
placed in the direction of the heaviest atom from the geo-

16

metric center of the ellipsoid (e.g., towards =~ O in the

molecule 12C16

o).

In summary, o, is insensitive to temperature, mole
fraction and cross section, but is reasonably sensitive to
the parameters R and S. By varying R and S simultaneously
at constant mole fraction and cross section, we obtain the
contours of «+ shown in Figure 1 for the equimass mixture
14-165_120185 1t is found experimentally that this mixture
has_ an inversion temperature at 247°K, that is, «+> 0 for
T >247°%K and o« €0 for T < 247°K. This inversion occurs
due to the attractive part of the true molecular interaction
potentials (17). Since our rigid model is a purely re-
pulsive potential, we can only hope Fo calculate the thermal
diffusion factor fér temperatures gréate: than the inversion
temperature, where the repulsive pari of the'molecular inter-
action potential dominates. The contours in Figure 1l are a
‘particularly coﬂ@enient way to express the results of our
calculations, since a vertical linear interpolation of o
between different contours is quite reliable.

As discussed in detail in Chapter 4, the presence of
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an external magnetic field increases the dimension of the
matrix expressions of Equations 4.15 and 4.16. For the
basis set we have chosen, each column matrix in Equation
4.15 in this case contains 30 elements and correspondingly,
Ais a 60x60 matrix. The explicit expressions for these
field transport coefficients are given in Equation 4.4 and
the coefficients we choose to characterize are given in
Equation 4.11. As in Chapter 4, we use the notation

A8,; =Ly -4y, » Where ¥ denotes the spe;:ies of interest and
now (=1, L, or tr corresponds to the parallel, perpen-
dicular, and transverse components, respectively.

The effect of an external field on ADI; for a hy-
pothetical binary mixture (15215 14pl4p, <%y =<o‘>p=(2.0)2‘lToAz,
R,=1.05, Re=1.1, §,25,=0, X,=0.5, T=300.0°K) is shown in
Figure 2. This behavior is precisely what we would expect
from analogy with the Senftleben-Beenakker effect on
thermal conductivity (37), which is given the following
physical interpretation.

The presence of a thermal gradient creates an
anisotropy in the angular velocity distribution of non-
spherical molecules. The rotation of a diamagnetic mole-
cule creates a magnetic moment along the direction of the
angular momentum (for paramagnetic molecules we need only
consider the compoOnent Of the inagneilic moment along the

angular momentum). When an external magnetic field is
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imposed upon the system, this magnetic moment precesses.
about the field. This precession will partially destroy
the anisotropy of the.angular velocity distribution and
cause a corresponding decrease in the transport property
of interest. The decrease will be noticeable when the
precession freqﬁency is of the order of the collision
frequency and will saturate when the precession frequency
is much greater than the collision frequency. Since
precession frequency is proportional to the field strength
H and collision frequency is proportional to the pressure

P, the quantities (H/Phs and (as$;;) i=1 or L, should

sat /
characterize the effect. The transverse effect reaches a
maximum when the precession frequency is of the order of
the collision frequency and decreases to zero in the limit
where the precession frequency is much greater than the
collision frequency. Thus the characteristic values in
this case are (A£,..).,, and the value of H/P which gives
that maximum.

Most mixtures of diatomic molecules will show the be-
havior as illustrated in Figure 2. However, we find that
certain sets of parameters give rise to the type of
anomalous behavior that is shown in Figure 3. 1In general
we f£ind that these anomalies occur in the neighborhood of
where AQ; =0 . Furthermore, these null poinis coi- '

respond to a sign inversion of AQIL. In Figure 4 we show
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the locus of points in the R.-R, plane where 4p], =0 for
our hypothetical mixture. These curves do, of course, de-
pend also upon the value of the total masses, mass distri-
bution, cross sections, and mole fractions. We can, for
example, obtain similar inversion points from a variance

of the mass distribution alone, leaving all other parameters
fixed. We defer a discussion of these anomalies until the
perturbation analysis in Chapter 8 is presented.

We now wish to compare our calculations with experiment
for the various binary mixtures of CO isotopes in field-
free space. We emphasize again that this choice is based
on the availability of good experimental data (35) and the
fact that several different isotopic mixtures have been
studied. Since the isotopic nature of the nuclei should not
affect the electronic structure of the molecules, the R and
S values for all species should be the same. The rigid
ellipsoid parameters R and <¢> are selected to give an op-
timal fit of thermal conductivity data (38, 39} for A,
(43/Ad)sar , and (H/P) ! where the experimental AA corresponds
to aA= £(4), +4),). We £ind Ry=1.143 and <e> 5 (2.17)%ma2.
We now use the experimental value of Q:; for the equimass

14C160-12C180 to find S¥-0.027. Using these param-

mixture
eters we obtain the comparison with experiment 'as shown in
Table 5.

The error for the mixtures other than the equimass
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mixture seems to be related to the fact that the rigid
sphere is not a good approximation to the spherical part
of the interaction potential (17). The relative difference
between the values of «4 for the mixtures in which the com-
ponents differ by two mass units, however, indicates good
agreement between experiment and theory, as shown in Table
6. If at this point we assume that the total mass dif-
ference and the internal structure give separate, additive
contributions to o, and also assume that the effect is
linear in the mass difference for small mass differences
(these assumptions are treated fully in Chapﬁer 8), the
calculated numbers are approximately .0073 per mass unit
too high. Making this correction we obtain Table 7.

The values of «+ given in Table 5 are calculated using
the parameters which give the experimental fit of thermal
conductivity in an external magnetic field and field-free
thermal diffusion at 300°K. Acéording to the empirical ex-
pressions for given by Boersma-Klein and deVries (35), the
experimental «r varies as the lnT. Since the calculated
value of «x;+is independent of T, we must vary the value of
S to fit experimental values of «; for the equimass mixture
at other temperatures (see Figure 1). The mass correction
demonstrated 'in Tables 6 and 7 works about equally well for
any value of S.

Since the magnetic field thermal conductivity data is
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available only at 3009K, we propose a second, less specific,
method of chbosing these potential parameters for other
temperatures. The field-free thermal conductivity is rel-
atively insensitive to R and S but is very sensitive to <o>.
Since for rigid models, A= M{T"%), we plot A, . /T% as a func-
tion of <¢> for our model. Then to find the cross section
which fits experiment at any temperature, 7. , we calculate
Aexp/Te!* from experimental data and graphically determine
<>,

The two sets of contours (of o, for the equimass mix-
14,16, 12,18

ture 0) corresponding to the two values of cross

section which fit experimental thermal conductivity data
for 12C160 at the temperatures 260 and 420°K are shown in
Figure 5. Since the inversion temperature of this mixture
is 2479K, these cross sections span a large portion of the
temperature range of interest. We note again that a verti-
cal linear interpolation between different contours of
constant cross section is quite reliable. It is also pos-
sible to perform a linear interpolation between contours of
different cross sections.

This method does not provide a unique fit of R and S
values. That is, we have an entire contour of corresponding
R and S values which will give the experimental value of o,

Lomen LUm Armsdemams md wdkliwa Wa slen nate +hat +ha mace mor.
b\t d it WM NALALLD M Albde D N WAl o B PENr e bl Saw e el —eavws etewme— —— —

rection illustrated in Tables 6 and 7 again works equally
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well for any set of R, S values on the constant o contour.
For both types of parameter fits, we see that a higher tem-
perature requires a positive shift in the value of S. This
seems in agreement with the fact that oxygen is more elec-
tronegative than carbon.

It is interesting to examine the effect of the el-
lipsoid parameter R on x4+ for the system DZ—HT, since this
mixture has been studied previously by Sandler and Dahler
(27) using a loaded sphere model. 1In Table 8 we show the
variation of x+ with R and mole fraction. Because of the
symmetry of D2, S must necessarily equal O for this system.
Varying R from 1.0 to 1.3 we obtain the improvement in agree-
ment with experiment (40) as demonstrated in Figure 6. The
apparent fit of experiment for R=1.3 is rather tenuous,
since previous experience has shown that a value of R=1.3
is an unrealistic distortion for H,. Also, as mentioned
earlier, molecules whose rotational levels are so widely
spaced cannot be reliably treated using classical mechanics.

We turn now to the study of the éffect of an external
magnetic field on the thermal diffusion and binary diffusion
coefficients of binary mixtures of isotopic diatomic mole-
cules. Sincé the experimental data available is limited,
the most important aspect to these calculations using the
exact algebraic equations 1s to provide a basis IOP nDWwnerical

analysis of our perturbation studies. As in the field-free
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case, the parameters for CO are fit from experimental thermal
conductivity and we find R ,=1.143 and <¢>C0=(2.17)2wz?.

For purposes of comparison we also calculate the magnetic
field effect on isotopic mixtures of N2, for which we find
Ry,=1.154 and <v>N2=(2.oo4)2v3?. ‘The thermal conductivity
in the field is not sensitive to variations in S. The
parameters we calculate are (4f,;),,, and (H/P)y (the ratio
of the magnetic field strength to pressure at half satura-

tion) for i=u or L, and (a2 and (H/P) of that maxi-

r er) max
mum for the transverse effect.

The field induced effects on the thermal diffusion and
binary diffusion coefficients for an equimolar binary mix-

13c16°_12c160 are shown in Figqure 7. All isotopic

ture
binary mixtures of diatoms display similar behavior. 1In
Table 9 and Table 10 we list the appropriate saturation or
maximum values together with the field positions of these
effects for thermal diffusion and binary diffusion, re-
spectively. In general we find the decrease in the parallel
and perpendicular components at saturation to be about 1%
for thermal diffusion (except for the eq,uiméss CO mixture
which shows a larger effect) ;and 10'3% for binary diffusion.
This small effect on diffusion can be seen from Equations
4.4, 4.15, 5.20, 5.21 and 5.22 to arise from the fact that
the first field contribution to diffusion is second order

in both the €, and &, expansions.
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Again, these results are precisely what we would expect
from analogy with the Senftleben-Beenakker effect on thermal
conductivity (37). However, experiments performed upon
" isotopic mixtures containing the paramagnetic triplet
o, (;Z) have reported no external magnetic field effect on
thermal diffusion to within the error limit of the experi-
ments (41, 42). Although our calculations are specific to
diamagnetic N2 and CO, the previous success (36, 43) of the
rigid ellipsoid model in calculating related transport co-
efficients lends credibility to our belief that we have
correctly mo&eled the physical effect itself and suggests
that peﬁhaps more experimental effort in these areas is in

order.
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Table 1. Dependence of «, on mole fraction
(R=1.1, s=0, <o>=3.25T22)

Mixture
Xet - 14cl6o_12c180 13C160_12c16o 12C180_12C16o 140160_120160

.01 - +00536 .01569 02474 .03046

.1 .00536 .01567 .02471 .03041
.3 .00534 .01565 .02463 .03030
.5 . 00532 .01562 .02455 .03020
.7 .00530 .01559 .02447 .03010
.9 .00528 .01556 .02440 .03000
.99 .00527 .01555 .02436 .02996

Table 2. Dependence of o« On crogs section. Cross section
expressed in units of TA
(klolp S=0, Xu= .01)

Mixture
<> 14,164 12,18, 13c160_12c16o 12,18, 12,16, 14,16, 12,16,
3.00 .00526 .01572 .02491 .03053
3.25 .00536 .01569 .02475 .03046
3.50 .00545 .01566 .02460 .03039
3.75 00553 .01563 02446 .03032

4.00 .00561 - .01560 .02432 .03026
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Table 3. Dependence of «, on R

a2
(<e>=3.26TA%, S=0, X, =.01)

Mixture
R 14C160_12c18o 130160_12(:16o 12c180_12c16o l4cl6o_120160

1.00 .00381 .01632 .02762 .03190
1.05 .00426 .01610 .02670 .03139
1.10 00536 .01569 .02474 .03046
1.15 .00614 .01527 .02315 .02956
1.20 .00613 .01486 .02238 .02874
1.25 .00546 .01437 .02214 .02784
1.30 .00448 .01378 .02199 .02676

Table 4. Dependence of «+on S. S is expressed in units
of the length of the minor axis
(R=1.1, <o>=3.26782, x.=.01)

S l4c16°_IZClso 130160-120160 12C180-120160 140160_12(:160

-.03 .00177 .01482 .02686 .02878
-.02 .00290 .01511 .02622 .02935
-.01 .00410 .01540 - 02552 .02990
o .00536 .01569 .02474 .03046
- «01 .00672 .01599 .02390 .03103

.02 .00816 .01631 .02301 .03162

.03 .00969 .01664 .02207 .03224
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Table 5. Comparison of calculated «xy with experiment
(<e>=(2.17) 2732, R=1.143, $=-0.027, X =.5, T=300°K)

Mixture Experiment Calculation
14.164_12.18, . .00254 .00254
13,164_12.16 .00544 .0141
12,18, 12,16, .0100 .0245

14,16, 12,16 .0132 .0278

Table 6. Comparison of relative o« values for mixtures
whose components differ by two mass units

Mixture Experiment Calculation
14,164 12,16 .0132 .0278
12,18, 12,16, .0100 ' .0245
difference .0032 .0033

Table 7. Comparison of mass corrected o, values with

experiment
Mixture Experiment Calculation
145165_12.18, .00254 .00254
135160._12¢16, - .00544 .0068
12.184_12416, .0100 .0099
1416, 12_16

co-""C0 .0132 .0132
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Table 8. &7 as a function of R and x, for D2-HT.
Q
<¢>=1.885WA?, S=0; a, is the eccentricity

parameter of Sandler-Dahler (27)

X
R
.01 .2 .4 .6 .8 .99

Sandler-Dahler
Loaded Sphere .0579 .0568 .0558 .0548 .0538 .0528
(aB = .16667)

1.0 .0579 «0567 .0560 .0549 .0538 .0528

1.10 .0551 .0546 .0541 .0536 .0531 .0527

1.15 .0494 .04925 ,04907 .04890 .04873 ,04858

1.20 .04162 .04166 .04171 .,04177 .04183 .04189

1.30 .02815 .02839 ,.,02864 .02899 .,02916 .02940




Table 9. Characterization of field effects on thermal di fusiog for various mix-
tures (see text). The units of A0%; are gm cm~l! sec~l. Here (H/P)y is
the value of H/P at which a quantity which saturates has half its s&tu-
ration value, and (H/P)max 1is the value of H/P at which a quantity which
possesses a maximum has that maximum. The subscript « refers to the
first species as the mixture is written

. . T T
 Mixture (4000) soe (H/P),s (40041 )sare (H/P)}ﬁ (40 ¢.)p,,  CB/P)pan
14)15, 14y -4.2x10"2  6.3x10° -6.4x10"°  4.2x10°  3.1x10™°  4.1x103
15 14,15 -5.4x10"2  6.4x10° -8.2x10"°  4.2x10°  3.9x10°2  4.2x10°3
-

15N2-14N2' -9.6x10~°2  6.4x103 -1.5x10"8  4.3x10°  6.9x10"°  4.2x10°

13,16,4,-120160 g 0x10™2  7.7x10° -1.4x10°%  s5.2x103  6.5x10"°  s5.0x10°3

12,18, 12,165 ¢ 5510710 8.5x10° 9.8x1071° s5.6x10° -4.7x10710 5.4x103

14,165 12.165 5 6x10°8 7.6x10°  -2.4x10"%  5.0x10°  1.2x10°8  5.1x10°

14,16, 12.18, 5 gx108 7.7x103 -2.7x107®  s.0x103 1.3x10°8  s5.1x10°3

80T



Table 10. Characterization of the field effects on binary diffusion for various
mixtures. The units of AL,,; are an3 sec-l and (H/P) is defined as
in Table 9
Mixture (8% ) sat (H/P) % (a ,";) ot (H/P) % (8824 ¢ )man (H/P) max
TaylSg 14y, ~4.5x10"7  6.1x10% -6.9x1077  4.1x10°  3.3x1077  4.o0x10°
By, -5 _asxa0”? 620 6.9x1077  4.2x10®  3.3x077 4.1x103
1oy - 14n, -5.2x10~7  6.2x103 _7.9x10"7  4¢.2x10° 3.ex10”7  4.1x103
130165 120165 9 2x108 " 7.8x10%  -1.1x1077  s5.2x10® s5.2x10™®  s5.1x10°
12018, 120165 _5.8x108  7.5x10°  -8.8x10™®  s5.0x10°  4.2x107®  4.9x103
140165 120165 5 5x107  7.6x10°  -3.4x10~7  s5.0x10%  1.6x10”7  5.1x10°
140165 120185 5 oy10~7  7.5x10%  -3.4x10~7  5.0x10°  1.6x10”7  4.9x103

60T



1.0

- Figure 1.

110

1l 1.2 .3
R

Contours of constant oty as a function of R and S
for an equimolar mixture of 14cl60-12c1€0. The

value of <r> is (2.17)2TA2. The numerical values
of «, are indicated on the contours



2.0

1.OF

Figure 2.

15k

] lTlllll' ) ] LI AN | ) LA AR RS | v ¥ LELELIBAS

t v 1t el 3 1 L. L it
107 0% 10° 10°
H/P (Gauss/ Torr)

Field-induced effects on the parallel, perpendicular, and trans-
verse thermal diffusion coefficients (in units of g/cm sgc) for
the mixture defined by: mg=30, mg=28, <¢>a=<r>ﬂ=(2.0)2FA2,
Ra=l'05’ Rp=l.l, X&=.5, Sa=SB=O

1T



T T T TTT7] T T T TTTT] T T T T TTT] T T VT TTTT
2} -
ADI_L x 1010
' apl, x1010 T
0O
AL ADLy x10'0 |
-'ar_ —
: L4 111111. A L 2 v anal s vl | R N T S
102 10° 104 10° 108

Ficure 3.

H/P (Gauss/Torr)

Field-induced effects on the parallel, perpendicular, and trans-
verse thermal diffusion coefficients (in units of g/cm sgc) for
the mixture defined by: m,=30, mg=28, <¢>a=<o->p=(2.o)2m2,
Ra=10091, RB=1:1' xa=05, Sa=SB=0

(AN



.19 T T T | 1 | l
1.18 |-

.16
.14+
.12+

.10}
1.08 |-

Q
(1

1.06 |-

1.04

1.02}+
101 | 1 1 | | | | i

Yol 1.05 1.09 113 LI7 1.2l
Ra

Figure 4. The solid curves represent the locus of points where (a DI,,)mt van-
ishes and the dashed curve represents the locus of points where Dlo
vanishes for rigid ellipsoid models: ma=30, m‘3=28,
<r>a=<r>5=(2.o)21r&2, X,=+5, Sg=Sp=0

/
|
|
l
I
|

ETT



114

Figure 5. Contours of constant «y as a function of R and S
for the system 14cl60-12c180. Dashed lines rep-
resent <a->co=3.061rfz’\2 and smooth lines represent
<°’>CO=3-757TS*2- The numerical values of «rare
indicated on the contours
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Figure 6. Dependence of «, on R for D2-HT. :
o .
<a'>H2=1.8851TA2, SH2=0' Dashed line represents
the experimental value at 338°K
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CHAPTER 8. CALCULATIONS AND IMPLICATIONS OF THE

PERTURBATION THEORY, NUMERICAL RESULTS

Our objective in this chapter is to examine the analytic
expressions given in Equations 5.26 and 5.27, which were de-
rived using perturbation techniqués. First we will examine
the field-free limit with the aim' of gaining some physical
insights into the thermal diffusive phenomenon. Next we
will investigate the nature of the magnetic field effect
and study the anomalies we found in the model studies of
Chapter 7. Lastly, we explore how to use these expressions
to predict the magnetic field effect on thermal diffusion
from the available data on thermal conductivity and field-
free thermal diffusion.

For our actual calculations we again choose the trun-
cated basis set displayed in Equation 4.7 and proceed to
examine explicitly the associated tensors which appear in
Equations 5.24, 5.25, and 5.27. As discussed in Chapter 5,
the 3x3 arrays, J,, D., and &, contain g‘“ as their only

tensor element so their inverse is simply §°

multiplied
by the inverse of the scalar coefficient array. The
tensorial nature of the off-éiagonal elements is determined
by the direct product of the corresponding basis set func-

tions. The element -Apgiyy, 6=/, 2, or 3, is a fourth rank

isotropic tensor which is traceless and symmetric on its
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first two and last two indices. It must, therefore, be
proportional to J (2) | The diagonal element Apsey) is a
sixth rank isotropic tensor which is traceless and symmetric
on its second and third indices and its fifth and sixth
indices. As discussed in Chapter 6, there are three such
independent tensors.

It can be shown that for rigid models the matrix ele-
ments Apgiis), i>!, 2, or 3 are identically zero. This may
be seen from the fact that such integrals are third rank
isotropic tensors and hence are proportional to the Levi-
Civita den;ity'g, which is the only isotropic third rank
tensor. By definition €, =1 for i, 4, and 4 in cyclic
order, €,,,=-! for an anticyclic order, and is zero if any
two indices are equal. The rigid model collision integral
formulas (44) immediately give that these third rank tensor
matrix elements are symmetric on two of their three indices
and hence they must be identically zero. The only nonzero,
off-diagonal matrix elements with wan are in fact the ele-
ments -A,g(v,s) . and wa is thus coupled to the 3 x3 blocks
L., D, and ;G'-, only through the term w[.a]‘®. As a conse-
quence, the effect of w.a on diffusion, thermal conductiv-
ity, and thermal diffusion is of fourth order in the
perturbation. This is evidenced by the fact that in the
"exact" calculations of Chapter 7, inclusion of the wa term

is responsible for 1-2% of the field effects which, as we
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have seen in Chapter 5, are of second order in the €,
perturbation.

In the presence of an external field, the diagonal
element A, ,vyy takes the form of Equation 6.35 and can be
expressed in the form of Equation 6.40 in order to perform
the required inversion operation. Our choice of represen-
tations in Equation 6.40 is now apparent, since if we con-
sider the A,,w elements in Equation 5.27, we have the

tensor form

2561 < SN LT + 291, 2] gV, (8.1)

which can be expressed in terms of the one dimensional unit

tensors as

A A

~ ~ A A 2 A a
A5 () (3 B ie)SE £ i, (2 103 "u))o"(z_zx!tz)xfu)). (8.2)

e mn L LY ]

The contraction of the indices of the unit tensors yields

the result
A, (3) < [ 4,6 0170 + 3, (N X080 + b9 L2 en). (8.3)

If we express the isotropic sixth rank tensor in terms of

a linear combination of the identity elements 1;” , that is,
“ _ & L T¢ (8.4
I%=%24aL, ‘

3
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where 4; are scalars, then the coefficients b; are given by

b = (usiv)/lw +LY)

b,= [<24;+ %:53]/[4,4,4.3 + T 35 a3 + ¥ 44)1

(8.5)
b-,’(u-iv)/(u—L‘V)
where
u,=4'3,43 7
v o= ?(%43*'24—3)
(8.6)
U= »8,2,45 - ?a(é“l roy+ Y o3)
2 =

';[?5 0,43+ 5 8,03 + 4 Aa»d,]_

We can in turn express the coefficients }j:u) in terms of
real second rank tensors as

Aoty « [ b, A2 + b, (1) (59-11) —b,,@)(ixg"’)], (8.7)
where

by = (Uu+ v¥v)/ (W +v?)

and

(8.8)
ber = (Ur -Vu)/ (U*+ v3),

The expression in Equation 8.7 can be seen to correspond to
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property (i) of the Onsager-Casimer relations in Chapter 3.

Before applying these perturbation expressions to the
systems of interest, we need to check their convergence
against the exact calculations of Chapter 7. Using the
potential parameters which fit experimental data (ChapterA
7), we f£ind that first order in ¢, compares to the exact
inversion to within 5 parts in 3000 for all field-free and
magnetic field coefficients. Furthermore, these coeffi-
cients to second order in the nonsphericity perturbation,
€,, compare with the first order &, coefficients to within
2%. This excellent convergence assures that our perturba-
tion calculations contain the essence of the exact inver-
sion calculations.

We further proposed in Chapter 5 to make Ay and A,
correspond to single species thermal conductivity and self-
diffusion matrices. For this interpretation they should be
insensitive to the isotopic differences. A detailed ex-
amination of the elements of Ay for the four CO mixtures
does indeed reveal a variance of less than 1%. The situa-
tion for A,,, however, is slightly more complex. In gen-
eral we finq that the variance is less than 3%, however,
the elements corresponding to the coupling of the first

and third and the second and third basis set terms in Equa-

A B comewe ammmemTes TEO Aeene lammm Enrrem m-tv'l-nv-cc anA +ho
\...l.uaa Tew VALY MNTQEAY aId/0 UYL “ICOT Lvua dlasrvee Ty Sels v

element corresponding to the coupling of the first and
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fourth basis set terms varies over an order of magnitude.
These terms which afe_sensitive to isotopié variations are
simply the elements corresponding to angular momentum de-
pendent basis functions. This sensitivity does not affect
our binary diffusion calculations since the crucial element
for these calculations is A,y . All the off-diagonal
elements of A,, prove to be small compared to this element.

We are now prepared to use the perturbation expres-
sions of Equation 5.26 and 5.27 to address the problems we
have outlined previously. Our first application is the
study of the thermal diffusive phenomenon itself, which we
approach by examining the isotopic mixtures of CO in field-
free space. For this case the coefficient of the trans-
verse effect (b,, of Equation 8.7) is identically zero and
the coefficients of the parallel (b, ) and perpendicular
(b,) effects are equal, thus yielding DI as a single scalar
coefficient times the isotropic tensor §¢’ . 1In Chapter 7
we dealt with the effect of the macroscopic and potential
parameters on thermal diffusion. We now use the perturba-
tion expressions to examine the kinematic parameters.

Each species in the mixture originally has three inde-
pendent kinematic variables: the masses of atoms 1 and 2
and the internuclear distance. The ;asses are, of course,
determined by the species under consideration and we assune

that the internuclear distance is fixed by spectroscopic
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data and is the same for all isotopic species. Conse-
quently, a binary mixture will have four independent
kinematic variables which are subject to isotopic variation.
The formulation of the perturbation expréssions in
Chapter 5 is based on the perturbation of the isotopic dif-
ferences about the limit of a simple gas of "average"
molecules. The utility of this approach lies in the in-
sensitivity we have already noted in the -A;; and Ap,
matrices. One possible choice of the average molecule is
a mole fraction éverage of the masses of like atoms between

the two species, that is,

m, =X, mg, + X Mg

and (8.9)

where m,, and m,, are the masses of the atoms 1 and 2, re-
spectively, in the diatomic species ¥ («or g) with mole
fraction X, , and m; and m, are the average masses of atoms
1 and 2. The four indpendent variables can be taken to be
the average masses m, and m,, the difference in the total

mass, 4M , where

AM:(M‘,Q»M“;)-(M‘| *m’z) . (8.10)

and the difference in the mass distribution,
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Am: (m“' -m‘.z) - (m""' Mpz). 8.11)

We can expand each of the elements contained in Equa-
tions 5.26 ahd 5.27 as a power series in AMand am. With
this expansion we find that the elements are effectively
linear in the total mass difference but that we must retain
terms through second order in 4m to obtain the convergence
to within 2%. Furthermore we find that the conﬁributions
from amam and (am)® are of roughly the same order of mag-
nitude and are approximately 1% of the linear mass distri-
bution contribution. Due to the nonlinearity in 4m, we
choose to calculate the thermal diffusion coefficient as
additive contributions frum ?he mass difference and the
moment of inertia difference, as illustrated in the fol-
lowing manner.

The first two rows in Table 11l give the values of AM
and am for the mixtures (in units of the mass of species
B, my, tmg;) as calculated from Equations 8.10 and 8.1l.

The row label "mass" implies that the given thermal dif-
fusion coefficient is calculated fof the case where the
mass distribution of each of the two species of interest
is fixed at the average molecule value and the total mass
of each species is set to its exact value. The row label
"mass distribution" implies a similar calculation for the

case that the total masses of the two species are equal to
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the average molecule total ﬁass, but the molecular mass
distributions are exact. The row labeled sum is simply
the sum of the previously two entries and the row labeled
exact contains the result of the perturbation calculation
using the actual molecular parameters.

First, we note that the sum of the separate effects
compares to the exact effect to within a fraction of a per-
cent. As previously mentioned, we conclude from this that
the effects due to 4™ and 4M are not coupled in the lower
perturbation orders. Next we note that as assumed in
Chapter 7, the contribution due to the total mass difference
is very nearly linear. This results from the fact that
the percent variation of the mass is small. However, as
has already been noted the contribution due to the mass
distribution difference is not linear. This can be seen
to arise from the fact that the difference in the mass
distribution between the two species is of the order of the
molecular mass distributions themselves.

As mentioned previously, the quantities m,, m,, 4n,
and 4m form a set of independent parameters. However, the
mass distribution difference am is not a physically mean-
ingful parameter, and thus we choose to view the mass
distribution in terﬁs of two other parameters, the moment

of inertia
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My, Mra
T, = "4'-—‘"] r” (8.12)

My +Mga
and the load,

!, = [%’—’;—:%] L, | (8.13)
which is the distance of the center of mass from the geo-
metric center of the bond. In both expressions f. is the
internuclear distance and is fixed. ‘

By splitting the mass distribution difference into
contributions from the load difference and moment of
inertia difference, we obtain the results as shown in
Table 12. The quantities AI--(L- Ta)/my re*  and
42=(1,-2,)/myre are unitless numbers with the masses
expressed again in terms of the mass of species g and the
distances expressed in units of the internuclear distance,
fe. The row labeled moment of inertia gives the thermal
diffusion coefficient calculated with the total masses and
loads of each of the two species in the mixture set to the
total mass and load of the average molecule respectively
and the moments of inertia given by their exact values. The
load row results from a similar calculation where only the
load differs between the molecules. The mass distribution
row is calculated as in Table 11.

We see again the sum of the moment of inertia and the



127

lo3d effects give the mass distributjon value to within a
fraction of 3 percent, This implies lack of coupling be-
tween the contributions from 4I and 44, and also that the
contributions from the total mass difference, load dif-
ference, and moment of inertia difference add separately
to give the tetal thermal diffusi?e effeet, We further
note that the contribution due to the moment of inertia
difference is nearly linear and thus the nonlinearity has
been isolated to the contribution from the load difference,
A positive value of O] implies that the «-species
migrates down the temperature gradient and concentrates
at the cooler end of the system., Throughout this work we
have written the mixtures in the form a-g, For example,

for the mixture T ctfg-12cl6p, 13.16
12,16

O corresponds to
species o« and O eorresponds to species . From Table
11 we see that for all cases the heavy species migrates to
the cold side, Table 12 shows that, other things being
equal, the species with the largest moment of inertia mi-
grates down the temperature gradient as does the species
with the smallest loaqd.

It is difficult to explain these thermal diffusive
results in detail with a simple mechanistic picture, but
the general idea is as follows, Simple mean free path

o

i;;aﬂs}qt;opq} anqg ;otational) down the temperature gradéent.
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The thermal conductivity coefficient is proportional to
both the average molecular velocity and the mean free path.
For an equimolar, isotopic mixture the lighter species
gives the largest contribution to thermal conductivity
because the average molecular speed is greater for the
lighter species. However, the effective mean free path
associated with the heavier species slightly larger than
for the lighter species. This larger effective mean free
path results from the fact that in a collision between the
two different species, the velocity of the heavier com-
ponent is slightly more persistent.

The existence of an energy flux down the temperature
gradient tends also to give rise to a mass flux down the
gradient. However, since there is no net mass flux (rel-
ative to the streaming velocity), the species that actually
moves down the gradient is the one for which thermal flux
and mass flux are most strongly coupled. This is the
species which is the least dynamically affected during a
collision between unlike molecules. If there is only a
mass difference between the molecules, there is a coupling
of mass flux with the flux of both translational and rota-
tional energy and the heavier molecule has the most per-
sistent velocity and consequently moves to the cold end.

- s —_ - 2 manT ee s~ . 1 3
If there is only o moment cf inertia difference bhetween

-—ea

molecules, a coupling only exists between the mass flux
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and the rotational energy flux. The molecule with the
largest moment of inertia is the least collisionally af-
fected and moves down the temperature gradient. For the
case when there is only a load difference between mole-
cules there is again a coupling only between the mass
flux and the rotational energy flux. The molecule with
the smallest load is least affected by collision and hence
moves down the temperature gradient. It should be noted
that these arguments basically apply only to impulsive
interactions. Attractive molecular interactions can, in
fact, lead to an inversion in the direction of separation
at lower temperatures.

These conclusions are supported by the perturbation
analysis. All of the calculations we report in Tables 1l
and 12 are for the full basis set to second order in €,.
We -£find, however, that for the field-free case the thermal
diffusion coefficient can be obtained to within about 10%
of the "exact" coefficient if we consider only the A,
element of App, Aoruay aNd Aprng iNApr, @ANA Apqp(gay ¢
Arrias) + Arriaay + and Agp i,y elements in App.. Since these
particular elements of -A;r and A, are insensitive to iso-
topic variations, the integrals which are important in the
calculations of the therﬁal diffusion coefficient are
;épTu:) and A preigy «  THCSC eiements, in turn. contain

collision integrals which couple the mass flux trial
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function w with the translational energy flux function
w(f-w? and the rotational energy flux functibn w (1 -n2),
respectively, for an a-pg type collision. In fact, the
element -A,; () is essentially the difference between the
collision integral coupling w and w(§ -w?) for the «th
species and the collision integral coupling the same trial
functions for the Ath species. Similarly, Apr¢i3) is the
difference between the collision integrals coupling w and
w (i-2) for the xth and pth species. Both A,;.,; and
Aprua) are nonzero for the case when there is a mass dif-
ference between the species, but only A,z is nonzero
when there is only a difference in moment of inertia or
load. The sign of the matrix elements Apre2) and Agrua)
ultimately determines which species concentrates at the
cold end, and fhis sign difference can be predicted from a
consideration of which species is most dynamically affected
in collision.

There is no field effect in our calculations unless
we include trial terms which are anisotropic in the angular
momentum. As previously discussed, for our purposes we
need only include the anisotropic term w [.l_l](’). Since this
term is of little consequence in the field-free case the
analysis just completed sheds little light on what happens
in the field. The inclusion of this term incieases thc

complexity of the arialytic expressions to such an extent
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that we make no attempt to explain the field effect in
physical terms. We examine instead the three distinct
types of field contributions (as seen from Equation 5.30
and the discussion in Chapter 5) and the additivity of
each contribution.

As is seen in Equation 4.5, the external field induces
three separate coefficients £, , £,, and f,,. In the per-
tﬁrbation expressions the field effect is contained en-
tirely in the five second order contributions to thermal
diffusion,gi(;) » j=1 tos. Each of these five contribu-
tions contain the three fieid coefficients but;j, by ¢3)
and b..(3), as indicated in Equation 8.7. The thermal con-
ductive type contributions ('gj¢1) and '47(¢2)) have the
same field dependence, that is b;()=,b; @) ,i=h,41,
or tr. Similarly the self-diffusion type contributions
('a3(4) and '4;(s)) have the same field dependence, that
is b;(%)¥ b.(s) . Furthermore we find that all coefficients
except b;(3) are only sensitive to about 2% over the range
of the isotopic CO mixtures. This last observation is the
basis for our assoqiation of these field terms with the
simple gas thermal conductivity and self-diffusion,
respectively.

In this work we will emphasize only calculations for
the paralicl ccmpcnent,.dofh ; and simplv note that the

perpendicular and transverse components exhibit analogous
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behavior. In Table 13 we display the three distinct field
contributions to the thermal diffusion coefficient ADJL .

Except for the mixture 120180-12 16

C™"0, the thermal conductive
“type contribution is the dominant factor. An inspection of
the two terms ‘A7 (/) and 'A3(2) which comprise the thermal
conductive contribution reveals that they are of the same
sign and add for all mixtures except 12C180-12C160. In
this exceptional case the two terms are nearly equal but
opposite in sign. As we shall later see this results from

the fact that 120180 has both a larger moment of inertia

and allargerfload than does 120160.

To examine these field contributions more thoroughly,
we test their additivity in the kinematic parameters. We
£find that the thermal conductive contribution does exhibit
additivity with respect to mass, moment of inertia, and
load, whereas the diffusion and hybrid field contributions
do not. This is shown in Table 14 for the mixture
14C160-12c160. The form of the expressions in Equation 5.27
again indicate the source of this béhavibr. Our previous
investigation of the isotopic sensitivity of the elements
in A, indicated that Appuzy » Aopeas) »+ ANA Aggey (and,
of course, the corresponding transpose elements) are in
fact dependent on isotopic variations. The terms which

B e e
PRV VTR SLYY

contain the thermal conductivity type field CoOnir

(‘a3¢n and 'a5(2)) depend upon the self-diffusion elementg -
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only through p,, which is effectively insensitive to the
isotopic variations. On the other hand, the hybrid field
dependence (‘43 (3)) and self-d@iffusion field dependence
(*a43¢9) and “3(s)) contain a sum of products of -A,, ele-
ments, and those'prodncts which are sensitive to the iso-
topic variations are not negligible and may even dominate.
Thus only the thermal diffusive type terms exhibit additiv-
ity. The additivity can now be used to examine the small-
ness of the thermai conductive contribution in the mixture
120180-120160. The sign inversion we noted earlier occurs
for :43 2¢2), and more specifically, for the contribution
to 2:12) due to the difference in the loads. The sign
change dﬁe to load contribution is expected since this is
the only CO mixture where the «-species has the largest
load. However, the fact that'the thermal conductive con-
tributions nearly cancel in this case appears to be a
fortuitous consequence of the particular kinematic param-
eters of this mixture.

We now wish to utilize these separations we have ob-
tained for the field effect to investigate the anomalies
which appeared in' the parameter studies of Chapter 7.
Examination of the inversion points4of Figure 4 with the
perturbatiop expressions of Equation 5.27 yields the type
of results which are illustrated in Figure 8 for the par-

allel component. We see that the inversion in the sign of
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ADI,, corresponds to a cancellation of the self-diffusion
and thermal conductive type field contributions, each of
which is much larger than the hybrid field contribution.
It is important to note that both the self-diffusion and
thermal conductive pieces exhibit the usual field satura-
tion effect; it is their sum which yields the anomalous
behavior. This same type of behavior is exhibited for the
perpendicular and transverse components, except that for
the transverse component we see a cagcelling effect on the
thermal conductive and diffusive maximum "humps" rather
than in the saturation value, as shown in Figure 9.

The perturbation study of single species thermal con-
ductivity (32) shows that the ratio 44,/4), to second
order in the nonsphericity expansion is equal to 3/2 in
saturation, which agrees with the prediction of Knaap and
Beenakker (45). A similar perturbation study on the self-
diffusion field terms yields the same ratio. 'Since our
thermal conductive type field terms (1 and 2 of Equation
5.27) and self-diffusion type field terms (4 and 5) con-
tain exactly this same field dependence, our thermal dif-
fusion field results also show this same 3/2 saturation
ratio when the hybrid field term is negligible. This ef-
fect can be seen in Table 9 of the last chapter.

. As a further application of our perturpation expres-—

sions we would like to be able to use them to predict the
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field effect on thermal diffusion from experimentally ob-
tained data for other effects with minimum reliance on any
particular collision model. Since field effects are dif-
ficult to measure experimentally, this would be a useful
result., To make these characterizations we would use the
available experimental data to parameterize the collision
integrals (or collections of collision integrals) and field
terms needed to evaluate Equation 5.27. As in our potential
parameter fitting, we have available experimental data for
thermal conductivity in both field and field-free space and
field-free thermal diffusion.

As discussed previously, the b;'s of Equation 8.7 are
insensitive to isotopic variations. This insensitivity
in combination with the thermal conductivity field data
allows us to determine the field dependence
($6Arr a0’ £Y) for those mixtures where the thermal con-
ductive type field terms dominate. From Equation 5.27 we
see that we now need to determine the field-free factor
which multiplies this field term. The field-free factor
is identical to the second order €, perturbation in field-
free space (that is, 'Az () and 'A3¢2) when ¥=0) so to
find this factor from experimental data we must separate
the zero and second order effects. This separation can in
principle be obtained by using the field-free thermal dif-

fusion data to parameterize the collision model. If this
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parameterization is sufficiently accurate, we can then use
the model to separate the zero order contribution from the
total effect. Our rigid model is inadequate for these pur-
poses since we cannot accommodate for the fact that the
rigid spherical limit gives the dominant contribution for
mixtures in which the species differ in total mass. These
separations and the resulting characterization of the
thermal diffusion field effect thus require a model with a
more realistic spherical limit than that of our rigid
models. Some preliminary considerations of this matter

are the subject of the next chapter.



Table 1l1. Additivity of o] for the separate contributions in the total mass
difference (aM) and mass distribution difference (am). The quanti-
ties aMm and am are expressed in units of mg. The units of p] are
g/cm sec. <e>=(2.17)%r32, R=1.143, S=-.027, X =.5, T=300

Mixture

14,165 12,18, 13,165 12,16, 12,18, 12,16, 14,16, 12,16,

M 0 .0358 .0716 .0716

AMm -.1336 -.0358 .0716 ~.0716
mass 0 .5163x10~° 1.0126x10~° 1.02356x10~°
distoietion .2738x107° .1267x107° ~.0337x107° .2236x107°
sum .2738x10~° .6430x107° .9789x10~° 1.2472x10°°
exact .2738x10~° .6438x10~° .9780x10~° 1.2492x107°

LET



Table 12. Additivity of p] for the separate contributions in the load (at) and
moment of inertia (AI) differences. 4@ is expressed in units of
mBre and A2 is in units of mBre. The units of o] are g/cm sec.
<e>=(2.17)2r32, R=1.143, S=-.027, X =.5, T=300

Mixture
140160_12018O 130160-120160 120180_12016O 14c160-120160
AT .0089 .0113 .0123 .0218
AP -.0668 -.0198 .0286 -.0382
moment'of -6 -6 -6 -6
inertia .0598x10 .0705x10 .0811x10 .1313x10
-6 -6 -6 -6
load .2130x10 .0560x10 -+1148x10 .0915x10
-6 -6 -6 -6
sum «2728x%10 .1265x10 ~.0337x10 .2228x10
mass .2738x10~° .1267x107° ~.0337x10~° .2236x10~°

distribution

8T
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Table 13. Values of 4p], x10° for the three types of field
contributions (see text). Units of 4y, are
g/cm sec. <ao>=(2.17)%Ta%, R=1.143, 5=-.027,

X =.5, T=300
o
Magnetic Field Contributions
Mixture

1a2(a)+1a2(s) 1a2(1)+1a2(2) 1a2@a) j:f.l 1a2(3)

14,16, 12,18,
13.16,_12,16,
12,18, 12,16

14,16, 12,16,

.0036 -.9051 . 0007 -.9008
.0290 .0518 -.0163 . 0645

.0098 -1.6126 .0032 -1.5986

Table 14. Additivity of ao], xlo9 for the three types of
contribution to the field effect for the mixture
140160 120160, <¢e>=(2.17) 232, R=1.143,
§=-.027, X =.5, T=300
Magnetic Field Contributions
ta2(4)+1al(s) 122(1)+1a2(2) 1a2(3)
load .1016 - 6.174 -.0260
moment of ,
inertia 2261 - 7.021 -.04083
sum .0833 ~15.840 .0514

P T W

T

05524 ~16.116 0316
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CHAPTER 9. A PROPOSAL FOR IMPROVED MODEL CALCULATIONS

Throughout this work our calculations have been limited
by fhe failure of the rigid sphere limit of}bur rigid el-
lipsoid ﬁodels to form an adequate basis for computation of
the dominant spherical part of the desired collision inte-
grals. We now suggest a scheme to remedy this situation.
Since these topics will be the subject of future research
work, we present here only a very brief outline of the con-
cepts involved and hopefully the spirit of future work.

We first consider briefly the dynamics of a rigid col-

lision. From the laws of mechanics we have

%%'ft='fa=' ic (9.1)
and

db,

3 T M= SxE, J,_ = Na = S:xF, (9.2)

where p, and L; are the linear and angular momenta of
molecule i, §; is the vector from the center of mass of
body .t to the point of collisional contact, and F; and

N; are the force and torque, respectively, on molecule

i. To calculate the collisional change resulting from the
impulsive interaction we simply integrate Equations 9.1
and 9.2 over the infinitesimal time interval of the col-

lision to obtain
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ap,=-0p, =4,K

and ) (9.3)
AL, = (S,x8)K , AL,= ($.x LK )

where 2, is the outward directed unit normal to the surface

of body ! at the point of collisional contact. The quan-

tity K is found from conservation of energy to be given by

_ 2.m A
K= T a L (al Exh) * T2 5.0k 8,28)]

(9.4)

Here u is the reduced mass, 3 is the relative velocity of
the points of contact (Equation 2.16), and I; is the
inertial tensor of molecule i .

The dynamical results of Equation 9.3 can be compactly

written (44) in terms of a multidimensional vector

1=(rY,q,,08,) (9.5)

where -2, and .a, are the reduced angular momenta and
Falu/m)® w, +(u/m,)a w, is the reduced center of mass and
Y= (“/..,)"'g, - (u/m)"? w, 1is the reduced relative momentum.
Here w; and m; are the reduced linear momentum and the
mass of particle . and & = m,my/tm,+m;). We find that

(142;7)&1-; =Dén - 2 and

(q-9') = 287 &, (9.6)
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vhere é,=(0,4,4a,,a,) and 0=7+a:+¢; . For linear mole-
cules a, = u/I)5(,x £,) and a,=(u/1,)5(¢.2£,). From

energy conservation it follows that
r=7? (9.7)

and from Equation 9.6 it can be shown that
gn’g = -é;'ﬂ

and (9.8)

Thus the result of a collision is simply to change the sign
of the component of 7 along §,, which in a geometric sense
corresponds to an improper rotation of % in the multi-
dimensional space.

For the special case of rigid spheres we need only
consider the reduced relative velocity ¥ and the surface
noz'mal,i , at the point of contact. This unit vector is
given by A= ¥-3y'/¢¥-y'1) , where the primed quantities
denote precollisional and unprimed denote postcollisional
relative velocities. Clearly, v*: y'2, y.£ =-y'4 , and
Y,a¥x-(2.-¥)L=Y¥, , and the collision serves only to change

the sign of the relative velocity component in the direction

of

P>
o |

: The qgeneral rigid ocollision results are thus simply

a multidimensional generalization of a rigid sphere
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collision in three dimensions.

For a spherical, soft, purely repulsive potential,
we can replace every collision by a dynamically equivalent
rigid interaction. The unit vecto§<i of the equivalent
collision is along the apse vector (that is, along y-y')
and the diameters of the equivalent rigid spheres are now,
of course, functions of Y.

For a soft, nonspherical interaction an analogous re-
sult in the multidimensional space of 3 can be obtained.

We define a unit vector &, (a generalized apse vector) by

-

€n=2-2'/Uin-2") (9.9)

which is the nonspherical analog of L. as an immediate

consequence of this definition, we have that

A A ’
€n°R - &pe

¢

2-E ) én=9,° 2 (9.10)
n? = m'?
Furthermore the unit vector &, can be written in the form

€nzlie) o, 4, a ,2,), (9.11)

A . . x .
where # is a unit vector along r-r' and o?: )+q*+a2. These
results are formally the same as Lhose f{or rigid nonspheri-

cal bodies. However, they differ from the true rigid case
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in that the shapes of the equivalent interacting rigid
bodies (and in particular, a, and ¢,) now depénd upon the
components °fI3_Z-

| The collision integral for any interaction model can

now be written in the general form

[r oLy = A 6 sakfip fup, fdg ™

(9.12)
X Aol (R )e -4, 0]

where (24T/w)% gt .is a nbrmalization constant, § and ¥ are
basis functions of the expansion of the distortion, g; is
the orientation vector of molecule £, and &4 is a generalized
cross section. The differences in the collision models are
manifested in the variable dependence of 4, that is,
A+2(p,8,,4) for rigid models (in particular, 4 is a con-
stant for rigid spheres) and & ¥A(!,£) for spherical soft
potentials, whereas in the general case 3:1(,#, ,1,%2) .
Equation 9.12 is, ol course, an exact result and
amounts to nothing more than a particular choice of inte-
gration variables to evaluate the general collision inte-
gral of Equation 4.18. The purpose of the foregoing dis-
cussion was merely to provide a rationale for this par-
ticular choice of variables in terms of a comparison with

the rigid interaction model. To proceed we need an expres-

sion for 4 which we propose to choose in such a way as to
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yield exact results in the limiting cases of a rigid inter-
action model and for a soft, spherical potential.

One possible method of approach arises from further
considération of the rigid body collision integrals as
given in reference (44). The collision dynamics may be
simply expressed in a rotated frame by introducing an

orthogonal transformation matrix S defined such that
5=§f.42 (9.13)

wheré ¢ is the generalized momentum vector expressed in a
coordinate frame that has £, as its nth unit vector. From
the previous discussion it is seen that $ is only a function
of &, B8, » and g#,. In the rotated frame, all (n-1) com-

. ponents of £ normal to €, are constants of the motion and

€, (the component of £ along &,) simply changes sign upon

collision. The collision integrals then become
L _ ﬁ_}_! }’3 n)
Cs,v105 = CE e fig it §, 85,543 ) 0 (9:14)
where

Ars. tu,¥) = fdg 3, d€ € expt-€) Lu' -w)v!, (9.15)
&0

Here <r>; is the average cross sectional area of a molecule
{ and &g = 7(<o; +<o>; +29<o5; <e>, ) is the value of 4 for

rigid spheres. The tensors 4 and v are polyads in the n
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dimensional vector space formed from w and v £’s, respec-
tively, and the basis functions §;, written as a tensor in
the multidimensional space, has the form §;=5, -u where
25, is a projection operator (see reference (44) for de-
tails). The primes denote precollision variables while
the unprimes denote postcollision variables.

We see by comparison of Equations 9.12 ‘and 9.14 that
the valuation of 4.5 (4,%r) 1is equivalent to performing
the momentum integrations of the collision integral. This
momentum integration is particularly simple since the only
change upon collision is a change in the sign of the com-
ponent along €n. Thus to perform the momentum integra-
tion we simply use the fact that £ = €, +6,.8.and €'= £,- €, €a
where &, is the projection of & on the subspace normal to
3,. From Equation 9.15 it is evident that this momentum
integral is independent of the shape of the rigid convex
model. The shape dependence is instead, contained in D,
the cross sectiond, and the projection operators S¢. and
Sy, Thus the tensor &5 (4,v) is exactly the same for
nonspherical molecules as it is for rigid spheres.

To generalize the model, we simply replace A.. (u4,v)
for the rigid sphere interaction by the appropriate cor-
responding quantity for a spherical soft potential and let
the remaining quantities 4, §4, , 2y, , and o retain their

rigid convex body form. The collision integrals obtained
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in this approximate manner will be exact in the limit of
spherical, soft collisions and in the limit of nonspherical
rigid body interactions.

The principles involved in this alteration of the
collision integrals are reasonably straightforward but
the algebraic details are rather tedious. Thus the actual

calculations are left as a future project.
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APPENDIX

We first wish to prove the commutation relationship in
i

Equation 6.19, namely

-~

CaY,8,"1=-4 A, (A.1)

From the definitions in Equations 6.15 and 6.17, we have as

in Equation 6.18,

LA, 87') = - 2g™rf-f1soee). (a.2)
The identity element g““ can always be expressed in terms
of combinations of §‘” ., the 3-dimensional second rank unit

tensor, which explicitly is

S0t +§7 2% =v. (a.3)

By definition, the symbol X, (where the subscript n is
usually implied) in Equation A.2 indicates the sum of

terms obtained by crossing the unit vector £ (or § or £)
into each of the n right (or left) hand indices of g‘"‘.

The only terms of Equation A.2 which survive this summation
of cross products are those terms which correspond to cross-
ing both indices of a U which bridges the two sets of
indices, that is, one index is a member of the left n
indices and one index is a member of the right n indices.

We prove the above crossing properties by considering
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a single U of the a2n rank tensor. If both indices of the
U lie in either the left n or right n indices, the crossing

operation will give a term with

TXU=CxUu+ Wy =0 (A.4)

imbedded in the remaining n-2 indices of the left or right
set. Hence to get a contribution the U must bridge the

two sets of indices. Now consider the crossing into only
ofie index of a bridging U. The commutation definition in

Equation A.2 must necessarily give in sum the combination
txU -vuxtg =0 (a.5)

imbedded in a bridging manner in the resulting tensor.

Thus bridging U's with only one index crossed will not

contribute. Finally, for a bridging U with both indices

crossed we have from the commutation definition that the

tensor

Lxuxf -fxuxt =hxu=Uxk | (A.6)

will be imbedded in the resulting tensor. It follows im-

mediately that
TZLEMYF-FE szt =51k, ~ (a.7)
From Equation A.2 and 6.15, this can be written as

Aln AL N (n)
LAy, 8] =-id, (a.8)



156

and our proof is completed.

Next, we wish to prove the relationship given in Equa-

tion 6.25, that is,

(‘:"‘Lu))z = nins 1) § n) .

(a.9)
By definitions in Equations 6.21 and 6.15 we have that
(A7) = B B+ Byvody” + B0 RS (a.10)
can be written in either the form
(A°)*=-T(axgmra)= - &gz (a.11)

or

(B(n))z - _;(ftn)x po} Qh 2 X {U”) o - £(n)x @"Jz 5‘") (A.12)

whereg =%, 7, or L. From Equation A.12 we see that the
first n and last n indices of ( Q"”)z' are traceless and
symmetric. Hence, since (A“)* is isotropic, it must be
proportional to §‘”’ . Let us now examine a single term of
$ in Equation A.1l which contains all bridging U's.

We first note that a term in (§“')* with all bridging U's
can only come from terms with all bridging U's. For the
term under consideration there are a total of n* combinations
. of crossihg ihto n bridging U's. Of these combinations,

n have crosses into the same U, which results in an bridging
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U's each with a factér of -1. The remaining _n(n-t) com-
binations have crosses into different U's and give rise
to ntn-1) bridging U's each with a factor of -1. ~ Hence
the crossing operation in effect multiplies éach term of

bridging U's by a factor of -ntn-i) -2n or - n¢n+:) and thus

(HL")) = nin+i) é‘"). (A.13)

Finally we extend this last proof to the direct
product tensor (%‘*)® . From the definitions in Equa-

tions 6.26 and 6.15 we have

BV = i [Qx, sW/5® + /28, $9] (A.14)
or

OPrg) _ oA w “)) =-i 3% ‘q{pe—g) (A.15)

7=4-( L o x@rs) (‘,’S /__{ £ tpr§) & . .

By expressing the identity element for the direct product
representation in terms of the identity elements for the

irreducible representations, we have that

i

"tm—g) ‘
( % T P*‘{) T (Ptg)
£ - (Xd X)= ‘_”_" I, X

(A.16)

g atid)

$=lp-gl

or
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(‘7} (”g))i - _3”,,) X (BP’” Y tpryg) . (A.17)

These relations are established in a manner similar to
Equations A.ll and A.12. From Equation A.l7 we see that

{ Z?"'”)’" is a linear combination of the identity elements

e
I, -

fact that the crossing operation does not transfer the

The last line of Equation A.16 makes use of the

identity element of an irreducible representation out of
that representation. |

If we now determine the number of bridging y‘s in
each I ;’ *$) we can apply the arguments of Equation A.13
to obtain the proportionality factor for each irreducible
representation identity element in the linear combination.
Consider as an example the irreducible representation of
weight lp-4l. If we assume for discussion purposes that

T in the direct product

p>3, and consider a temsor §’
basis where §‘” is a traceless and symmetric tensor of
weight p and Im is a similar tensor of weight ¢, then
§"e¥T Y is a basis function for the irreducible repre-
sentation of weight /p-g/. Thus the number of bridging
U's in the identity element for this irreducible repre-
sentation is (p-¢), and the proportionality constant is
then (p-4)Lp-%)+1] . A similar argument holds for every

. . . . . .
waicht reprezentation contained in the direct product

basis, and thus we have that
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) ptg) )2 ) (p+g)
(4°P)" = 2 g4 IV (A.18)
- $=1p-90 -

which establishes the desired relation.
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